SEED
Documentation |
#include <cryptopp/seed.h>
|
SEED is a 128-bit block cipher created by the Korea Information & Security Agency. SEED is a national industrial association standard (TTAS KO-12.0004, 1999). The SEED homepage is located at Korea Internet & Security Agency.
Crypto++ offers several ciphers from Korea Internet & Security Agency portfolio. The algorithms include ARIA, HIGHT, LEA, LSH and SEED. Additionally the library offers CHAM.
Note: if your project is using encryption alone to secure your data, encryption alone is usually not enough. Please take a moment to read Authenticated Encryption and consider using an algorithm or mode like CCM, GCM, EAX or ChaCha20Poly1305.
Sample Programs
There are three sample programs. The first shows SEED key and block sizes. The second and third use filters in a pipeline. Pipelining is a high level abstraction and it handles buffering input, buffering output and padding for you.
If you are benchmarking then you may want to visit Benchmarks | Sample Program. It shows you how to use StreamTransformation::ProcessString
method to process multiple blocks at a time using a standard C++ interface. Calling a cipher's ProcessString
or ProcessBlock
eventually call a cipher's ProcessAndXorBlock
or AdvancedProcessBlocks
, and they are the lowest level API you can use.
The first example dumps the minimum, maximum, and default key lengths used by SEED.
using namespace CryptoPP; int main(int argc, char* argv[]) { std::cout << "key length: " << SEED::DEFAULT_KEYLENGTH << std::endl; std::cout << "key length (min): " << SEED::MIN_KEYLENGTH << std::endl; std::cout << "key length (max): " << SEED::MAX_KEYLENGTH << std::endl; std::cout << "block size: " << SEED::BLOCKSIZE << std::endl; return 0; }
Output from the above snippet produces the following. Notice the default key size is 128 bits or 16 bytes.
key length: 16 key length (min): 16 key length (max): 16 block size: 16
The following program shows how to operate SEED in CBC mode using a pipeline. The key is declared on the stack using a SecByteBlock to ensure the sensitive material is zeroized. Similar could be used for both plain text and recovered text.
using namespace CryptoPP; void Print(const std::string& label, const std::string& val) { std::string encoded; StringSource(val, true, new HexEncoder( new StringSink(encoded) ) // HexEncoder ); // StringSource std::cout << label << ": " << encoded << std::endl; } int main(int argc, char* argv[]) { AutoSeededRandomPool prng; SecByteBlock key(SEED::DEFAULT_KEYLENGTH); SecByteBlock iv(SEED::BLOCKSIZE); prng.GenerateBlock(key, key.size()); prng.GenerateBlock(iv, iv.size()); std::string plain = "CBC Mode Test"; std::string cipher, encoded, recovered; /*********************************\ \*********************************/ try { std::cout << "plain text: " << plain << std::endl; CBC_Mode< SEED >::Encryption e; e.SetKeyWithIV(key, key.size(), iv); // The StreamTransformationFilter adds padding // as required. ECB and CBC Mode must be padded // to the block size of the cipher. StringSource s(plain, true, new StreamTransformationFilter(e, new StringSink(cipher) ) // StreamTransformationFilter ); // StringSource } catch(const CryptoPP::Exception& e) { std::cerr << e.what() << std::endl; exit(1); } /*********************************\ \*********************************/ Print("key", std::string((const char*)key.begin(), key.size())); Print("iv", std::string((const char*)iv.begin(), iv.size())); Print("cipher text", cipher); /*********************************\ \*********************************/ try { CBC_Mode< SEED >::Decryption d; d.SetKeyWithIV(key, key.size(), iv); // The StreamTransformationFilter removes // padding as required. StringSource s(cipher, true, new StreamTransformationFilter(d, new StringSink(recovered) ) // StreamTransformationFilter ); // StringSource std::cout << "recovered text: " << recovered << std::endl; } catch(const CryptoPP::Exception& e) { std::cerr << e.what() << std::endl; exit(1); } return 0; }
A typical output is shown below. Note that each run will produce different results because the key and initialization vector are randomly generated.
$ ./test.exe plain text: CBC Mode Test key: 959AB159D01CEBEECF03D155C32C9556 iv: 868968248DE294D4D702E0891F4D143F cipher text: 9369BFEDF5F584E543D11BBDE137959B recovered text: CBC Mode Test
The third program modifies the second program by switching to EAX mode. Authenticity assurances can placed on the cipher text for nearly no programming costs by using an authenticated encryption mode. Below the StreamTransformationFilter was replaced by AuthenticatedEncryptionFilter and AuthenticatedDecryptionFilter.
EAX< SEED >::Encryption e; e.SetKeyWithIV(key, key.size(), iv); StringSource(plain, true, new AuthenticatedEncryptionFilter(e, new StringSink(cipher) ) // StreamTransformationFilter ); // StringSource ... EAX< SEED >::Decryption d; d.SetKeyWithIV(key, key.size(), iv); StringSource s(cipher, true, new AuthenticatedDecryptionFilter(d, new StringSink(recovered) ) // StreamTransformationFilter ); // StringSource
Typical output is as follows. Notice the additional cipher text bytes due to the MAC bytes. See EAX Mode for details.
$ ./test.exe plain text: EAX Mode Test key: 9A1F6B4AB5D39877B421C3E1D0D891E9 iv: 0669FBFCC996B207D40124BE9144E63D cipher text: BC4C87A9129348764B6A69FD606FDDCA1BB61DEC2FF3CFD25E6798E2CF recovered text: EAX Mode Test
To manually insert bytes into the filter, perform multiple Put
s. Though Get
is used below, a StringSink
could easily be attached and save the administrivia.
const size_t SIZE = 16 * 4; string plain(SIZE, 0x00); for(size_t i = 0; i < plain.size(); i++) plain[i] = 'A' + (i%26); ... CBC_Mode < SEED >::Encryption encryption(key, sizeof(key), iv); StreamTransformationFilter encryptor(encryption, NULL); for(size_t j = 0; j < plain.size(); j++) encryptor.Put((byte)plain[j]); encryptor.MessageEnd(); size_t ready = encryptor.MaxRetrievable(); string cipher(ready, 0x00); encryptor.Get((byte*) &cipher[0], cipher.size());
Downloads
No downloads.