Crypto++ 8.9
Free C++ class library of cryptographic schemes
tiger.cpp
1// tiger.cpp - originally written and placed in the public domain by Wei Dai
2
3#include "pch.h"
4#include "config.h"
5
6#include "tiger.h"
7#include "misc.h"
8#include "cpu.h"
9
10#if defined(CRYPTOPP_DISABLE_TIGER_ASM)
11# undef CRYPTOPP_X86_ASM_AVAILABLE
12# undef CRYPTOPP_X32_ASM_AVAILABLE
13# undef CRYPTOPP_X64_ASM_AVAILABLE
14# undef CRYPTOPP_SSE2_ASM_AVAILABLE
15#endif
16
17NAMESPACE_BEGIN(CryptoPP)
18
19std::string Tiger::AlgorithmProvider() const
20{
21#ifndef CRYPTOPP_DISABLE_TIGER_ASM
22# if CRYPTOPP_SSE2_ASM_AVAILABLE
23 if (HasSSE2())
24 return "SSE2";
25# endif
26#endif
27 return "C++";
28}
29
30void Tiger::InitState(HashWordType *state)
31{
32 state[0] = W64LIT(0x0123456789ABCDEF);
33 state[1] = W64LIT(0xFEDCBA9876543210);
34 state[2] = W64LIT(0xF096A5B4C3B2E187);
35}
36
37void Tiger::TruncatedFinal(byte *digest, size_t digestSize)
38{
39 CRYPTOPP_ASSERT(digest != NULLPTR);
40 ThrowIfInvalidTruncatedSize(digestSize);
41
42 PadLastBlock(56, 0x01);
43 CorrectEndianess(m_data, m_data, 56);
44
45 m_data[7] = GetBitCountLo();
46
47 Transform(m_state, m_data);
48 CorrectEndianess(m_state, m_state, DigestSize());
49 std::memcpy(digest, m_state, digestSize);
50
51 Restart(); // reinit for next use
52}
53
54void Tiger::Transform (word64 *state, const word64 *data)
55{
56#if CRYPTOPP_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
57 if (HasSSE2())
58 {
59#ifdef __GNUC__
60 __asm__ __volatile__
61 (
62 INTEL_NOPREFIX
63 AS_PUSH_IF86(bx)
64#else
65 AS2( lea edx, [table])
66 AS2( mov eax, state)
67 AS2( mov esi, data)
68#endif
69 AS2( movq mm0, [eax])
70 AS2( movq mm1, [eax+1*8])
71 AS2( movq mm5, mm1)
72 AS2( movq mm2, [eax+2*8])
73 AS2( movq mm7, [edx+4*2048+0*8])
74 AS2( movq mm6, [edx+4*2048+1*8])
75 AS2( mov ecx, esp)
76 AS2( and esp, 0xfffffff0)
77 AS2( sub esp, 8*8)
78 AS_PUSH_IF86(cx)
79
80#define SSE2_round(a,b,c,x,mul) \
81 AS2( pxor c, [x])\
82 AS2( movd ecx, c)\
83 AS2( movzx edi, cl)\
84 AS2( movq mm3, [edx+0*2048+edi*8])\
85 AS2( movzx edi, ch)\
86 AS2( movq mm4, [edx+3*2048+edi*8])\
87 AS2( shr ecx, 16)\
88 AS2( movzx edi, cl)\
89 AS2( pxor mm3, [edx+1*2048+edi*8])\
90 AS2( movzx edi, ch)\
91 AS2( pxor mm4, [edx+2*2048+edi*8])\
92 AS3( pextrw ecx, c, 2)\
93 AS2( movzx edi, cl)\
94 AS2( pxor mm3, [edx+2*2048+edi*8])\
95 AS2( movzx edi, ch)\
96 AS2( pxor mm4, [edx+1*2048+edi*8])\
97 AS3( pextrw ecx, c, 3)\
98 AS2( movzx edi, cl)\
99 AS2( pxor mm3, [edx+3*2048+edi*8])\
100 AS2( psubq a, mm3)\
101 AS2( movzx edi, ch)\
102 AS2( pxor mm4, [edx+0*2048+edi*8])\
103 AS2( paddq b, mm4)\
104 SSE2_mul_##mul(b)
105
106#define SSE2_mul_5(b) \
107 AS2( movq mm3, b)\
108 AS2( psllq b, 2)\
109 AS2( paddq b, mm3)
110
111#define SSE2_mul_7(b) \
112 AS2( movq mm3, b)\
113 AS2( psllq b, 3)\
114 AS2( psubq b, mm3)
115
116#define SSE2_mul_9(b) \
117 AS2( movq mm3, b)\
118 AS2( psllq b, 3)\
119 AS2( paddq b, mm3)
120
121#define label2_5 1
122#define label2_7 2
123#define label2_9 3
124
125#define SSE2_pass(A,B,C,mul,X) \
126 AS2( xor ebx, ebx)\
127 ASL(mul)\
128 SSE2_round(A,B,C,X+0*8+ebx,mul)\
129 SSE2_round(B,C,A,X+1*8+ebx,mul)\
130 AS2( cmp ebx, 6*8)\
131 ASJ( je, label2_##mul, f)\
132 SSE2_round(C,A,B,X+2*8+ebx,mul)\
133 AS2( add ebx, 3*8)\
134 ASJ( jmp, mul, b)\
135 ASL(label2_##mul)
136
137#define SSE2_key_schedule(Y,X) \
138 AS2( movq mm3, [X+7*8])\
139 AS2( pxor mm3, mm6)\
140 AS2( movq mm4, [X+0*8])\
141 AS2( psubq mm4, mm3)\
142 AS2( movq [Y+0*8], mm4)\
143 AS2( pxor mm4, [X+1*8])\
144 AS2( movq mm3, mm4)\
145 AS2( movq [Y+1*8], mm4)\
146 AS2( paddq mm4, [X+2*8])\
147 AS2( pxor mm3, mm7)\
148 AS2( psllq mm3, 19)\
149 AS2( movq [Y+2*8], mm4)\
150 AS2( pxor mm3, mm4)\
151 AS2( movq mm4, [X+3*8])\
152 AS2( psubq mm4, mm3)\
153 AS2( movq [Y+3*8], mm4)\
154 AS2( pxor mm4, [X+4*8])\
155 AS2( movq mm3, mm4)\
156 AS2( movq [Y+4*8], mm4)\
157 AS2( paddq mm4, [X+5*8])\
158 AS2( pxor mm3, mm7)\
159 AS2( psrlq mm3, 23)\
160 AS2( movq [Y+5*8], mm4)\
161 AS2( pxor mm3, mm4)\
162 AS2( movq mm4, [X+6*8])\
163 AS2( psubq mm4, mm3)\
164 AS2( movq [Y+6*8], mm4)\
165 AS2( pxor mm4, [X+7*8])\
166 AS2( movq mm3, mm4)\
167 AS2( movq [Y+7*8], mm4)\
168 AS2( paddq mm4, [Y+0*8])\
169 AS2( pxor mm3, mm7)\
170 AS2( psllq mm3, 19)\
171 AS2( movq [Y+0*8], mm4)\
172 AS2( pxor mm3, mm4)\
173 AS2( movq mm4, [Y+1*8])\
174 AS2( psubq mm4, mm3)\
175 AS2( movq [Y+1*8], mm4)\
176 AS2( pxor mm4, [Y+2*8])\
177 AS2( movq mm3, mm4)\
178 AS2( movq [Y+2*8], mm4)\
179 AS2( paddq mm4, [Y+3*8])\
180 AS2( pxor mm3, mm7)\
181 AS2( psrlq mm3, 23)\
182 AS2( movq [Y+3*8], mm4)\
183 AS2( pxor mm3, mm4)\
184 AS2( movq mm4, [Y+4*8])\
185 AS2( psubq mm4, mm3)\
186 AS2( movq [Y+4*8], mm4)\
187 AS2( pxor mm4, [Y+5*8])\
188 AS2( movq [Y+5*8], mm4)\
189 AS2( paddq mm4, [Y+6*8])\
190 AS2( movq [Y+6*8], mm4)\
191 AS2( pxor mm4, [edx+4*2048+2*8])\
192 AS2( movq mm3, [Y+7*8])\
193 AS2( psubq mm3, mm4)\
194 AS2( movq [Y+7*8], mm3)
195
196 SSE2_pass(mm0, mm1, mm2, 5, esi)
197 SSE2_key_schedule(esp+4, esi)
198 SSE2_pass(mm2, mm0, mm1, 7, esp+4)
199 SSE2_key_schedule(esp+4, esp+4)
200 SSE2_pass(mm1, mm2, mm0, 9, esp+4)
201
202 AS2( pxor mm0, [eax+0*8])
203 AS2( movq [eax+0*8], mm0)
204 AS2( psubq mm1, mm5)
205 AS2( movq [eax+1*8], mm1)
206 AS2( paddq mm2, [eax+2*8])
207 AS2( movq [eax+2*8], mm2)
208
209 AS_POP_IF86(sp)
210 AS1( emms)
211
212#ifdef __GNUC__
213 AS_POP_IF86(bx)
214 ATT_PREFIX
215 :
216 : "a" (state), "S" (data), "d" (table)
217 : "%ecx", "%edi", "memory", "cc"
218 );
219#endif
220 }
221 else
222#endif
223 {
224 word64 a = state[0];
225 word64 b = state[1];
226 word64 c = state[2];
227 word64 Y[8];
228
229#define t1 (table)
230#define t2 (table+256)
231#define t3 (table+256*2)
232#define t4 (table+256*3)
233
234#define round(a,b,c,x,mul) \
235 c ^= x; \
236 a -= t1[GETBYTE(c,0)] ^ t2[GETBYTE(c,2)] ^ t3[GETBYTE(c,4)] ^ t4[GETBYTE(c,6)]; \
237 b += t4[GETBYTE(c,1)] ^ t3[GETBYTE(c,3)] ^ t2[GETBYTE(c,5)] ^ t1[GETBYTE(c,7)]; \
238 b *= mul
239
240#define pass(a,b,c,mul,X) {\
241 int i=0;\
242 while (true)\
243 {\
244 round(a,b,c,X[i+0],mul); \
245 round(b,c,a,X[i+1],mul); \
246 if (i==6)\
247 break;\
248 round(c,a,b,X[i+2],mul); \
249 i+=3;\
250 }}
251
252#define key_schedule(Y,X) \
253 Y[0] = X[0] - (X[7]^W64LIT(0xA5A5A5A5A5A5A5A5)); \
254 Y[1] = X[1] ^ Y[0]; \
255 Y[2] = X[2] + Y[1]; \
256 Y[3] = X[3] - (Y[2] ^ ((~Y[1])<<19)); \
257 Y[4] = X[4] ^ Y[3]; \
258 Y[5] = X[5] + Y[4]; \
259 Y[6] = X[6] - (Y[5] ^ ((~Y[4])>>23)); \
260 Y[7] = X[7] ^ Y[6]; \
261 Y[0] += Y[7]; \
262 Y[1] -= Y[0] ^ ((~Y[7])<<19); \
263 Y[2] ^= Y[1]; \
264 Y[3] += Y[2]; \
265 Y[4] -= Y[3] ^ ((~Y[2])>>23); \
266 Y[5] ^= Y[4]; \
267 Y[6] += Y[5]; \
268 Y[7] -= Y[6] ^ W64LIT(0x0123456789ABCDEF)
269
270 pass(a,b,c,5,data);
271 key_schedule(Y,data);
272 pass(c,a,b,7,Y);
273 key_schedule(Y,Y);
274 pass(b,c,a,9,Y);
275
276 state[0] = a ^ state[0];
277 state[1] = b - state[1];
278 state[2] = c + state[2];
279 }
280}
281
282NAMESPACE_END
unsigned int DigestSize() const
Provides the digest size of the hash.
Definition iterhash.h:191
static void Transform(word64 *digest, const word64 *data)
Operate the hash.
Definition tiger.cpp:54
static void InitState(HashWordType *state)
Initialize state array.
Definition tiger.cpp:30
void TruncatedFinal(byte *digest, size_t digestSize)
Computes the hash of the current message.
Definition tiger.cpp:37
Library configuration file.
#define W64LIT(x)
Declare an unsigned word64.
Definition config_int.h:129
unsigned long long word64
64-bit unsigned datatype
Definition config_int.h:101
Functions for CPU features and intrinsics.
Utility functions for the Crypto++ library.
Crypto++ library namespace.
Precompiled header file.
Classes for the Tiger message digest.
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition trap.h:68