Crypto++ 8.9
Free C++ class library of cryptographic schemes
|
Classes and functions for number theoretic operations. More...
Go to the source code of this file.
Classes | |
class | PrimeSelector |
Application callback to signal suitability of a candidate prime. More... | |
class | PrimeAndGenerator |
Generator of prime numbers of special forms. More... | |
Functions | |
CRYPTOPP_DLL const word16 * | GetPrimeTable (unsigned int &size) |
The Small Prime table. | |
CRYPTOPP_DLL Integer | MaurerProvablePrime (RandomNumberGenerator &rng, unsigned int bits) |
Generates a provable prime. | |
CRYPTOPP_DLL Integer | MihailescuProvablePrime (RandomNumberGenerator &rng, unsigned int bits) |
Generates a provable prime. | |
CRYPTOPP_DLL bool | IsSmallPrime (const Integer &p) |
Tests whether a number is a small prime. | |
CRYPTOPP_DLL bool | TrialDivision (const Integer &p, unsigned bound) |
Tests whether a number is divisible by a small prime. | |
CRYPTOPP_DLL bool | SmallDivisorsTest (const Integer &p) |
Tests whether a number is divisible by a small prime. | |
CRYPTOPP_DLL bool | IsFermatProbablePrime (const Integer &n, const Integer &b) |
Determine if a number is probably prime. | |
CRYPTOPP_DLL bool | IsLucasProbablePrime (const Integer &n) |
Determine if a number is probably prime. | |
CRYPTOPP_DLL bool | IsStrongProbablePrime (const Integer &n, const Integer &b) |
Determine if a number is probably prime. | |
CRYPTOPP_DLL bool | IsStrongLucasProbablePrime (const Integer &n) |
Determine if a number is probably prime. | |
CRYPTOPP_DLL bool | RabinMillerTest (RandomNumberGenerator &rng, const Integer &n, unsigned int rounds) |
Determine if a number is probably prime. | |
CRYPTOPP_DLL bool | IsPrime (const Integer &p) |
Verifies a number is probably prime. | |
CRYPTOPP_DLL bool | VerifyPrime (RandomNumberGenerator &rng, const Integer &p, unsigned int level=1) |
Verifies a number is probably prime. | |
CRYPTOPP_DLL bool | FirstPrime (Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector) |
Finds a random prime of special form. | |
CRYPTOPP_DLL unsigned int | PrimeSearchInterval (const Integer &max) |
CRYPTOPP_DLL AlgorithmParameters | MakeParametersForTwoPrimesOfEqualSize (unsigned int productBitLength) |
Integer | GCD (const Integer &a, const Integer &b) |
Calculate the greatest common divisor. | |
bool | RelativelyPrime (const Integer &a, const Integer &b) |
Determine relative primality. | |
Integer | LCM (const Integer &a, const Integer &b) |
Calculate the least common multiple. | |
Integer | EuclideanMultiplicativeInverse (const Integer &a, const Integer &b) |
Calculate multiplicative inverse. | |
CRYPTOPP_DLL Integer | CRT (const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u) |
Chinese Remainder Theorem. | |
CRYPTOPP_DLL int | Jacobi (const Integer &a, const Integer &b) |
Calculate the Jacobi symbol. | |
CRYPTOPP_DLL Integer | Lucas (const Integer &e, const Integer &p, const Integer &n) |
Calculate the Lucas value. | |
CRYPTOPP_DLL Integer | InverseLucas (const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u) |
Calculate the inverse Lucas value. | |
Integer | ModularMultiplication (const Integer &x, const Integer &y, const Integer &m) |
Modular multiplication. | |
Integer | ModularExponentiation (const Integer &x, const Integer &e, const Integer &m) |
Modular exponentiation. | |
CRYPTOPP_DLL Integer | ModularSquareRoot (const Integer &a, const Integer &p) |
Extract a modular square root. | |
CRYPTOPP_DLL Integer | ModularRoot (const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u) |
Extract a modular root. | |
CRYPTOPP_DLL bool | SolveModularQuadraticEquation (Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p) |
Solve a Modular Quadratic Equation. | |
CRYPTOPP_DLL unsigned int | DiscreteLogWorkFactor (unsigned int bitlength) |
Estimate work factor. | |
CRYPTOPP_DLL unsigned int | FactoringWorkFactor (unsigned int bitlength) |
Estimate work factor. | |
Classes and functions for number theoretic operations.
Definition in file nbtheory.h.
CRYPTOPP_DLL const word16 * GetPrimeTable | ( | unsigned int & | size | ) |
The Small Prime table.
size | number of elements in the table |
GetPrimeTable() obtains pointer to small prime table and provides the size of the table. /p size is an out parameter.
CRYPTOPP_DLL Integer MaurerProvablePrime | ( | RandomNumberGenerator & | rng, |
unsigned int | bits ) |
Generates a provable prime.
rng | a RandomNumberGenerator to produce random material |
bits | the number of bits in the prime number |
CRYPTOPP_DLL Integer MihailescuProvablePrime | ( | RandomNumberGenerator & | rng, |
unsigned int | bits ) |
Generates a provable prime.
rng | a RandomNumberGenerator to produce random material |
bits | the number of bits in the prime number |
Mihailescu's methods performs a search using algorithmic progressions.
CRYPTOPP_DLL bool IsSmallPrime | ( | const Integer & | p | ) |
Tests whether a number is a small prime.
p | a candidate prime to test |
Internally, the library maintains a table of the first 32719 prime numbers in sorted order. IsSmallPrime searches the table and returns true if p is in the table.
CRYPTOPP_DLL bool TrialDivision | ( | const Integer & | p, |
unsigned | bound ) |
Tests whether a number is divisible by a small prime.
TrialDivision() returns true
if p
is divisible by some prime less than bound
. bound
should not be greater than the largest entry in the prime table, which is 32719.
CRYPTOPP_DLL bool SmallDivisorsTest | ( | const Integer & | p | ) |
Tests whether a number is divisible by a small prime.
SmallDivisorsTest() returns true
if p
is NOT divisible by some prime less than 32719.
Determine if a number is probably prime.
n | the number to test |
b | the base to exponentiate |
IsFermatProbablePrime raises b
to the n-1
power and checks if the result is congruent to 1 modulo n
.
These is no reason to use IsFermatProbablePrime, use IsStrongProbablePrime or IsStrongLucasProbablePrime instead.
CRYPTOPP_DLL bool IsLucasProbablePrime | ( | const Integer & | n | ) |
Determine if a number is probably prime.
n | the number to test |
These is no reason to use IsLucasProbablePrime, use IsStrongProbablePrime or IsStrongLucasProbablePrime instead.
Determine if a number is probably prime.
n | the number to test |
b | the base to exponentiate |
CRYPTOPP_DLL bool IsStrongLucasProbablePrime | ( | const Integer & | n | ) |
Determine if a number is probably prime.
n | the number to test |
CRYPTOPP_DLL bool RabinMillerTest | ( | RandomNumberGenerator & | rng, |
const Integer & | n, | ||
unsigned int | rounds ) |
Determine if a number is probably prime.
rng | a RandomNumberGenerator to produce random material |
n | the number to test |
rounds | the number of tests to perform |
This is the Rabin-Miller primality test, i.e. repeating the strong probable prime test for several rounds with random bases
CRYPTOPP_DLL bool IsPrime | ( | const Integer & | p | ) |
Verifies a number is probably prime.
p | a candidate prime to test |
IsPrime() is suitable for testing candidate primes when creating them. Internally, IsPrime() utilizes SmallDivisorsTest(), IsStrongProbablePrime() and IsStrongLucasProbablePrime().
CRYPTOPP_DLL bool VerifyPrime | ( | RandomNumberGenerator & | rng, |
const Integer & | p, | ||
unsigned int | level = 1 ) |
Verifies a number is probably prime.
rng | a RandomNumberGenerator for randomized testing |
p | a candidate prime to test |
level | the level of thoroughness of testing |
VerifyPrime() is suitable for testing candidate primes created by others. Internally, VerifyPrime() utilizes IsPrime() and one-round RabinMillerTest(). If the candidate passes and level is greater than 1, then 10 round RabinMillerTest() primality testing is performed.
CRYPTOPP_DLL bool FirstPrime | ( | Integer & | p, |
const Integer & | max, | ||
const Integer & | equiv, | ||
const Integer & | mod, | ||
const PrimeSelector * | pSelector ) |
Finds a random prime of special form.
p | an Integer reference to receive the prime |
max | the maximum value |
equiv | the equivalence class based on the parameter mod |
mod | the modulus used to reduce the equivalence class |
pSelector | pointer to a PrimeSelector function for the application to signal suitability |
FirstPrime() uses a fast sieve to find the first probable prime in {x | p<=x<=max and xmod==equiv}
Calculate the greatest common divisor.
a | the first term |
b | the second term |
Definition at line 146 of file nbtheory.h.
Determine relative primality.
a | the first term |
b | the second term |
a
and b
are relatively prime, false otherwise. Definition at line 153 of file nbtheory.h.
Calculate the least common multiple.
a | the first term |
b | the second term |
a
and b
. Definition at line 160 of file nbtheory.h.
Calculate multiplicative inverse.
a | the number to test |
b | the modulus |
(a ^ -1) % n
or 0 if none exists.EuclideanMultiplicativeInverse returns the multiplicative inverse of the Integer *a
modulo the Integer b
. If no Integer exists then Integer 0 is returned.
Definition at line 169 of file nbtheory.h.
CRYPTOPP_DLL Integer CRT | ( | const Integer & | xp, |
const Integer & | p, | ||
const Integer & | xq, | ||
const Integer & | q, | ||
const Integer & | u ) |
Chinese Remainder Theorem.
xp | the first number, mod p |
p | the first prime modulus |
xq | the second number, mod q |
q | the second prime modulus |
u | inverse of p mod q |
CRT uses the Chinese Remainder Theorem to calculate x
given x mod p
and x mod q
, and u
the inverse of p mod q
.
Calculate the Jacobi symbol.
a | the first term |
b | the second term |
Jacobi symbols are calculated using the following rules:
b
is prime, then Jacobi(a, b)
, then return 0ab
==0 AND a
is quadratic residue mod b
, then return 1return -1 otherwise
Refer to a number theory book for what Jacobi symbol means when b
is not prime.
Calculate the Lucas value.
Lucas() calculates the Lucas function V_e(p, 1) mod n
.
CRYPTOPP_DLL Integer InverseLucas | ( | const Integer & | e, |
const Integer & | m, | ||
const Integer & | p, | ||
const Integer & | q, | ||
const Integer & | u ) |
Calculate the inverse Lucas value.
InverseLucas() calculates x
such that m==Lucas(e, x, p*q)
, p q
primes, u
is inverse of p mod q
.
Modular multiplication.
x | the first term |
y | the second term |
m | the modulus |
(x * y) % m
. Definition at line 211 of file nbtheory.h.
Modular exponentiation.
x | the base |
e | the exponent |
m | the modulus |
(a ^ b) % m
. Definition at line 219 of file nbtheory.h.
Extract a modular square root.
a | the number to extract square root |
p | the prime modulus |
ModularSquareRoot returns x
such that x*xp == a
, p
prime
CRYPTOPP_DLL Integer ModularRoot | ( | const Integer & | a, |
const Integer & | dp, | ||
const Integer & | dq, | ||
const Integer & | p, | ||
const Integer & | q, | ||
const Integer & | u ) |
Extract a modular root.
ModularRoot returns x
such that a==ModularExponentiation(x, e, p*q)
, p
q
primes, and e
relatively prime to (p-1)*(q-1)
, dp=d%(p-1)
, dq=d%(q-1)
, (d is inverse of e mod (p-1)*(q-1)
) and u=inverse of p mod q
.
CRYPTOPP_DLL bool SolveModularQuadraticEquation | ( | Integer & | r1, |
Integer & | r2, | ||
const Integer & | a, | ||
const Integer & | b, | ||
const Integer & | c, | ||
const Integer & | p ) |
Solve a Modular Quadratic Equation.
r1 | the first residue |
r2 | the second residue |
a | the first coefficient |
b | the second coefficient |
c | the third constant |
p | the prime modulus |
SolveModularQuadraticEquation() finds r1
and r2
such that ax^2 + bx + c == 0 (mod p)
for x in {r1, r2}
, p
prime.
CRYPTOPP_DLL unsigned int DiscreteLogWorkFactor | ( | unsigned int | bitlength | ) |
Estimate work factor.
bitlength | the size of the number, in bits |
DiscreteLogWorkFactor returns log base 2 of estimated number of operations to calculate discrete log or factor a number.
CRYPTOPP_DLL unsigned int FactoringWorkFactor | ( | unsigned int | bitlength | ) |
Estimate work factor.
bitlength | the size of the number, in bits |
FactoringWorkFactor returns log base 2 of estimated number of operations to calculate discrete log or factor a number.