Crypto++  8.9
Free C++ class library of cryptographic schemes
nbtheory.cpp
1 // nbtheory.cpp - originally written and placed in the public domain by Wei Dai
2 
3 #include "pch.h"
4 
5 #ifndef CRYPTOPP_IMPORTS
6 
7 #include "nbtheory.h"
8 #include "integer.h"
9 #include "modarith.h"
10 #include "algparam.h"
11 #include "smartptr.h"
12 #include "misc.h"
13 #include "stdcpp.h"
14 #include "trap.h"
15 
16 #ifdef _OPENMP
17 # include <omp.h>
18 #endif
19 
20 NAMESPACE_BEGIN(CryptoPP)
21 
22 // Keep sync'd with primetab.cpp
23 const unsigned int maxPrimeTableSize = 3511;
24 const word s_lastSmallPrime = 32719;
25 
26 const word16 * GetPrimeTable(unsigned int &size)
27 {
28  extern const word16 precomputedPrimeTable[maxPrimeTableSize];
29  size = maxPrimeTableSize;
30  return precomputedPrimeTable;
31 }
32 
33 bool IsSmallPrime(const Integer &p)
34 {
35  unsigned int primeTableSize;
36  const word16 * primeTable = GetPrimeTable(primeTableSize);
37 
38  if (p.IsPositive() && p <= primeTable[primeTableSize-1])
39  return std::binary_search(primeTable, primeTable+primeTableSize, (word16)p.ConvertToLong());
40  else
41  return false;
42 }
43 
44 bool TrialDivision(const Integer &p, unsigned bound)
45 {
46  unsigned int primeTableSize;
47  const word16 * primeTable = GetPrimeTable(primeTableSize);
48 
49  CRYPTOPP_ASSERT(primeTable[primeTableSize-1] >= bound);
50 
51  unsigned int i;
52  for (i = 0; primeTable[i]<bound; i++)
53  if ((p % primeTable[i]) == 0)
54  return true;
55 
56  if (bound == primeTable[i])
57  return (p % bound == 0);
58  else
59  return false;
60 }
61 
62 bool SmallDivisorsTest(const Integer &p)
63 {
64  unsigned int primeTableSize;
65  const word16 * primeTable = GetPrimeTable(primeTableSize);
66  return !TrialDivision(p, primeTable[primeTableSize-1]);
67 }
68 
69 bool IsFermatProbablePrime(const Integer &n, const Integer &b)
70 {
71  if (n <= 3)
72  return n==2 || n==3;
73 
74  CRYPTOPP_ASSERT(n>3 && b>1 && b<n-1);
75  return a_exp_b_mod_c(b, n-1, n)==1;
76 }
77 
78 bool IsStrongProbablePrime(const Integer &n, const Integer &b)
79 {
80  if (n <= 3)
81  return n==2 || n==3;
82 
83  CRYPTOPP_ASSERT(n>3 && b>1 && b<n-1);
84 
85  if ((n.IsEven() && n!=2) || GCD(b, n) != 1)
86  return false;
87 
88  Integer nminus1 = (n-1);
89  unsigned int a;
90 
91  // calculate a = largest power of 2 that divides (n-1)
92  for (a=0; ; a++)
93  if (nminus1.GetBit(a))
94  break;
95  Integer m = nminus1>>a;
96 
97  Integer z = a_exp_b_mod_c(b, m, n);
98  if (z==1 || z==nminus1)
99  return true;
100  for (unsigned j=1; j<a; j++)
101  {
102  z = z.Squared()%n;
103  if (z==nminus1)
104  return true;
105  if (z==1)
106  return false;
107  }
108  return false;
109 }
110 
111 bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
112 {
113  if (n <= 3)
114  return n==2 || n==3;
115 
116  CRYPTOPP_ASSERT(n>3);
117 
118  Integer b;
119  for (unsigned int i=0; i<rounds; i++)
120  {
121  b.Randomize(rng, 2, n-2);
122  if (!IsStrongProbablePrime(n, b))
123  return false;
124  }
125  return true;
126 }
127 
128 bool IsLucasProbablePrime(const Integer &n)
129 {
130  if (n <= 1)
131  return false;
132 
133  if (n.IsEven())
134  return n==2;
135 
136  CRYPTOPP_ASSERT(n>2);
137 
138  Integer b=3;
139  unsigned int i=0;
140  int j;
141 
142  while ((j=Jacobi(b.Squared()-4, n)) == 1)
143  {
144  if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square
145  return false;
146  ++b; ++b;
147  }
148 
149  if (j==0)
150  return false;
151  else
152  return Lucas(n+1, b, n)==2;
153 }
154 
155 bool IsStrongLucasProbablePrime(const Integer &n)
156 {
157  if (n <= 1)
158  return false;
159 
160  if (n.IsEven())
161  return n==2;
162 
163  CRYPTOPP_ASSERT(n>2);
164 
165  Integer b=3;
166  unsigned int i=0;
167  int j;
168 
169  while ((j=Jacobi(b.Squared()-4, n)) == 1)
170  {
171  if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square
172  return false;
173  ++b; ++b;
174  }
175 
176  if (j==0)
177  return false;
178 
179  Integer n1 = n+1;
180  unsigned int a;
181 
182  // calculate a = largest power of 2 that divides n1
183  for (a=0; ; a++)
184  if (n1.GetBit(a))
185  break;
186  Integer m = n1>>a;
187 
188  Integer z = Lucas(m, b, n);
189  if (z==2 || z==n-2)
190  return true;
191  for (i=1; i<a; i++)
192  {
193  z = (z.Squared()-2)%n;
194  if (z==n-2)
195  return true;
196  if (z==2)
197  return false;
198  }
199  return false;
200 }
201 
202 struct NewLastSmallPrimeSquared
203 {
204  Integer * operator()() const
205  {
206  return new Integer(Integer(s_lastSmallPrime).Squared());
207  }
208 };
209 
210 bool IsPrime(const Integer &p)
211 {
212  if (p <= s_lastSmallPrime)
213  return IsSmallPrime(p);
214  else if (p <= Singleton<Integer, NewLastSmallPrimeSquared>().Ref())
215  return SmallDivisorsTest(p);
216  else
218 }
219 
220 bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level)
221 {
222  bool pass = IsPrime(p) && RabinMillerTest(rng, p, 1);
223  if (level >= 1)
224  pass = pass && RabinMillerTest(rng, p, 10);
225  return pass;
226 }
227 
228 unsigned int PrimeSearchInterval(const Integer &max)
229 {
230  return max.BitCount();
231 }
232 
233 static inline bool FastProbablePrimeTest(const Integer &n)
234 {
235  return IsStrongProbablePrime(n,2);
236 }
237 
238 AlgorithmParameters MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength)
239 {
240  if (productBitLength < 16)
241  throw InvalidArgument("invalid bit length");
242 
243  Integer minP, maxP;
244 
245  if (productBitLength%2==0)
246  {
247  minP = Integer(182) << (productBitLength/2-8);
248  maxP = Integer::Power2(productBitLength/2)-1;
249  }
250  else
251  {
252  minP = Integer::Power2((productBitLength-1)/2);
253  maxP = Integer(181) << ((productBitLength+1)/2-8);
254  }
255 
256  return MakeParameters("RandomNumberType", Integer::PRIME)("Min", minP)("Max", maxP);
257 }
258 
259 class PrimeSieve
260 {
261 public:
262  // delta == 1 or -1 means double sieve with p = 2*q + delta
263  PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta=0);
264  bool NextCandidate(Integer &c);
265 
266  void DoSieve();
267  static void SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv);
268 
269  Integer m_first, m_last, m_step;
270  signed int m_delta;
271  word m_next;
272  std::vector<bool> m_sieve;
273 };
274 
275 PrimeSieve::PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta)
276  : m_first(first), m_last(last), m_step(step), m_delta(delta), m_next(0)
277 {
278  DoSieve();
279 }
280 
281 bool PrimeSieve::NextCandidate(Integer &c)
282 {
283  bool safe = SafeConvert(std::find(m_sieve.begin()+m_next, m_sieve.end(), false) - m_sieve.begin(), m_next);
284  CRYPTOPP_UNUSED(safe); CRYPTOPP_ASSERT(safe);
285  if (m_next == m_sieve.size())
286  {
287  m_first += long(m_sieve.size())*m_step;
288  if (m_first > m_last)
289  return false;
290  else
291  {
292  m_next = 0;
293  DoSieve();
294  return NextCandidate(c);
295  }
296  }
297  else
298  {
299  c = m_first + long(m_next)*m_step;
300  ++m_next;
301  return true;
302  }
303 }
304 
305 void PrimeSieve::SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv)
306 {
307  if (stepInv)
308  {
309  size_t sieveSize = sieve.size();
310  size_t j = (word32(p-(first%p))*stepInv) % p;
311  // if the first multiple of p is p, skip it
312  if (first.WordCount() <= 1 && first + step*long(j) == p)
313  j += p;
314  for (; j < sieveSize; j += p)
315  sieve[j] = true;
316  }
317 }
318 
319 void PrimeSieve::DoSieve()
320 {
321  unsigned int primeTableSize;
322  const word16 * primeTable = GetPrimeTable(primeTableSize);
323 
324  const unsigned int maxSieveSize = 32768;
325  unsigned int sieveSize = STDMIN(Integer(maxSieveSize), (m_last-m_first)/m_step+1).ConvertToLong();
326 
327  m_sieve.clear();
328  m_sieve.resize(sieveSize, false);
329 
330  if (m_delta == 0)
331  {
332  for (unsigned int i = 0; i < primeTableSize; ++i)
333  SieveSingle(m_sieve, primeTable[i], m_first, m_step, (word16)m_step.InverseMod(primeTable[i]));
334  }
335  else
336  {
337  CRYPTOPP_ASSERT(m_step%2==0);
338  Integer qFirst = (m_first-m_delta) >> 1;
339  Integer halfStep = m_step >> 1;
340  for (unsigned int i = 0; i < primeTableSize; ++i)
341  {
342  word16 p = primeTable[i];
343  word16 stepInv = (word16)m_step.InverseMod(p);
344  SieveSingle(m_sieve, p, m_first, m_step, stepInv);
345 
346  word16 halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p;
347  SieveSingle(m_sieve, p, qFirst, halfStep, halfStepInv);
348  }
349  }
350 }
351 
352 bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
353 {
354  CRYPTOPP_ASSERT(!equiv.IsNegative() && equiv < mod);
355 
356  Integer gcd = GCD(equiv, mod);
357  if (gcd != Integer::One())
358  {
359  // the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)
360  if (p <= gcd && gcd <= max && IsPrime(gcd) && (!pSelector || pSelector->IsAcceptable(gcd)))
361  {
362  p = gcd;
363  return true;
364  }
365  else
366  return false;
367  }
368 
369  unsigned int primeTableSize;
370  const word16 * primeTable = GetPrimeTable(primeTableSize);
371 
372  if (p <= primeTable[primeTableSize-1])
373  {
374  const word16 *pItr;
375 
376  --p;
377  if (p.IsPositive())
378  pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong());
379  else
380  pItr = primeTable;
381 
382  while (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector->IsAcceptable(*pItr))))
383  ++pItr;
384 
385  if (pItr < primeTable+primeTableSize)
386  {
387  p = *pItr;
388  return p <= max;
389  }
390 
391  p = primeTable[primeTableSize-1]+1;
392  }
393 
394  CRYPTOPP_ASSERT(p > primeTable[primeTableSize-1]);
395 
396  if (mod.IsOdd())
397  return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);
398 
399  p += (equiv-p)%mod;
400 
401  if (p>max)
402  return false;
403 
404  PrimeSieve sieve(p, max, mod);
405 
406  while (sieve.NextCandidate(p))
407  {
408  if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p))
409  return true;
410  }
411 
412  return false;
413 }
414 
415 // the following two functions are based on code and comments provided by Preda Mihailescu
416 static bool ProvePrime(const Integer &p, const Integer &q)
417 {
418  CRYPTOPP_ASSERT(p < q*q*q);
419  CRYPTOPP_ASSERT(p % q == 1);
420 
421 // this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test
422 // for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q,
423 // or be prime. The next two lines build the discriminant of a quadratic equation
424 // which holds iff p is built up of two factors (exercise ... )
425 
426  Integer r = (p-1)/q;
427  if (((r%q).Squared()-4*(r/q)).IsSquare())
428  return false;
429 
430  unsigned int primeTableSize;
431  const word16 * primeTable = GetPrimeTable(primeTableSize);
432 
433  CRYPTOPP_ASSERT(primeTableSize >= 50);
434  for (int i=0; i<50; i++)
435  {
436  Integer b = a_exp_b_mod_c(primeTable[i], r, p);
437  if (b != 1)
438  return a_exp_b_mod_c(b, q, p) == 1;
439  }
440  return false;
441 }
442 
443 Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int pbits)
444 {
445  Integer p;
446  Integer minP = Integer::Power2(pbits-1);
447  Integer maxP = Integer::Power2(pbits) - 1;
448 
449  if (maxP <= Integer(s_lastSmallPrime).Squared())
450  {
451  // Randomize() will generate a prime provable by trial division
452  p.Randomize(rng, minP, maxP, Integer::PRIME);
453  return p;
454  }
455 
456  unsigned int qbits = (pbits+2)/3 + 1 + rng.GenerateWord32(0, pbits/36);
457  Integer q = MihailescuProvablePrime(rng, qbits);
458  Integer q2 = q<<1;
459 
460  while (true)
461  {
462  // this initializes the sieve to search in the arithmetic
463  // progression p = p_0 + \lambda * q2 = p_0 + 2 * \lambda * q,
464  // with q the recursively generated prime above. We will be able
465  // to use Lucas tets for proving primality. A trick of Quisquater
466  // allows taking q > cubic_root(p) rather than square_root: this
467  // decreases the recursion.
468 
469  p.Randomize(rng, minP, maxP, Integer::ANY, 1, q2);
470  PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*q2, maxP), q2);
471 
472  while (sieve.NextCandidate(p))
473  {
474  if (FastProbablePrimeTest(p) && ProvePrime(p, q))
475  return p;
476  }
477  }
478 
479  // not reached
480  return p;
481 }
482 
483 Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
484 {
485  const unsigned smallPrimeBound = 29, c_opt=10;
486  Integer p;
487 
488  unsigned int primeTableSize;
489  const word16 * primeTable = GetPrimeTable(primeTableSize);
490 
491  if (bits < smallPrimeBound)
492  {
493  do
494  p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2);
495  while (TrialDivision(p, 1 << ((bits+1)/2)));
496  }
497  else
498  {
499  const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
500  double relativeSize;
501  do
502  relativeSize = std::pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1);
503  while (bits * relativeSize >= bits - margin);
504 
505  Integer a,b;
506  Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize));
507  Integer I = Integer::Power2(bits-2)/q;
508  Integer I2 = I << 1;
509  unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
510  bool success = false;
511  while (!success)
512  {
513  p.Randomize(rng, I, I2, Integer::ANY);
514  p *= q; p <<= 1; ++p;
515  if (!TrialDivision(p, trialDivisorBound))
516  {
517  a.Randomize(rng, 2, p-1, Integer::ANY);
518  b = a_exp_b_mod_c(a, (p-1)/q, p);
519  success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
520  }
521  }
522  }
523  return p;
524 }
525 
526 Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
527 {
528  // isn't operator overloading great?
529  return p * (u * (xq-xp) % q) + xp;
530 /*
531  Integer t1 = xq-xp;
532  cout << hex << t1 << endl;
533  Integer t2 = u * t1;
534  cout << hex << t2 << endl;
535  Integer t3 = t2 % q;
536  cout << hex << t3 << endl;
537  Integer t4 = p * t3;
538  cout << hex << t4 << endl;
539  Integer t5 = t4 + xp;
540  cout << hex << t5 << endl;
541  return t5;
542 */
543 }
544 
545 Integer ModularSquareRoot(const Integer &a, const Integer &p)
546 {
547  // Callers must ensure p is prime, GH #1249
549 
550  if (p%4 == 3)
551  return a_exp_b_mod_c(a, (p+1)/4, p);
552 
553  Integer q=p-1;
554  unsigned int r=0;
555  while (q.IsEven())
556  {
557  r++;
558  q >>= 1;
559  }
560 
561  Integer n=2;
562  while (Jacobi(n, p) != -1)
563  ++n;
564 
565  Integer y = a_exp_b_mod_c(n, q, p);
566  Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
567  Integer b = (x.Squared()%p)*a%p;
568  x = a*x%p;
569  Integer tempb, t;
570 
571  while (b != 1)
572  {
573  unsigned m=0;
574  tempb = b;
575  do
576  {
577  m++;
578  b = b.Squared()%p;
579  if (m==r)
580  return Integer::Zero();
581  }
582  while (b != 1);
583 
584  t = y;
585  for (unsigned i=0; i<r-m-1; i++)
586  t = t.Squared()%p;
587  y = t.Squared()%p;
588  r = m;
589  x = x*t%p;
590  b = tempb*y%p;
591  }
592 
593  CRYPTOPP_ASSERT(x.Squared()%p == a);
594  return x;
595 }
596 
597 bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p)
598 {
599  // Callers must ensure p is prime, GH #1249
601 
602  Integer D = (b.Squared() - 4*a*c) % p;
603  switch (Jacobi(D, p))
604  {
605  default:
606  CRYPTOPP_ASSERT(false); // not reached
607  return false;
608  case -1:
609  return false;
610  case 0:
611  r1 = r2 = (-b*(a+a).InverseMod(p)) % p;
612  CRYPTOPP_ASSERT(((r1.Squared()*a + r1*b + c) % p).IsZero());
613  return true;
614  case 1:
615  Integer s = ModularSquareRoot(D, p);
616  Integer t = (a+a).InverseMod(p);
617  r1 = (s-b)*t % p;
618  r2 = (-s-b)*t % p;
619  CRYPTOPP_ASSERT(((r1.Squared()*a + r1*b + c) % p).IsZero());
620  CRYPTOPP_ASSERT(((r2.Squared()*a + r2*b + c) % p).IsZero());
621  return true;
622  }
623 }
624 
625 Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq,
626  const Integer &p, const Integer &q, const Integer &u)
627 {
628  // Callers must ensure p and q are prime, GH #1249
629  CRYPTOPP_ASSERT(IsPrime(p) && IsPrime(q));
630 
631  // GCC warning bug, https://stackoverflow.com/q/12842306/608639
632 #ifdef _OPENMP
633  Integer p2, q2;
634  #pragma omp parallel
635  #pragma omp sections
636  {
637  #pragma omp section
638  p2 = ModularExponentiation((a % p), dp, p);
639  #pragma omp section
640  q2 = ModularExponentiation((a % q), dq, q);
641  }
642 #else
643  const Integer p2 = ModularExponentiation((a % p), dp, p);
644  const Integer q2 = ModularExponentiation((a % q), dq, q);
645 #endif
646 
647  return CRT(p2, p, q2, q, u);
648 }
649 
650 Integer ModularRoot(const Integer &a, const Integer &e,
651  const Integer &p, const Integer &q)
652 {
653  // Callers must ensure p and q are prime, GH #1249
654  CRYPTOPP_ASSERT(IsPrime(p) && IsPrime(q));
655 
659  CRYPTOPP_ASSERT(!!dp && !!dq && !!u);
660  return ModularRoot(a, dp, dq, p, q, u);
661 }
662 
663 /*
664 Integer GCDI(const Integer &x, const Integer &y)
665 {
666  Integer a=x, b=y;
667  unsigned k=0;
668 
669  CRYPTOPP_ASSERT(!!a && !!b);
670 
671  while (a[0]==0 && b[0]==0)
672  {
673  a >>= 1;
674  b >>= 1;
675  k++;
676  }
677 
678  while (a[0]==0)
679  a >>= 1;
680 
681  while (b[0]==0)
682  b >>= 1;
683 
684  while (1)
685  {
686  switch (a.Compare(b))
687  {
688  case -1:
689  b -= a;
690  while (b[0]==0)
691  b >>= 1;
692  break;
693 
694  case 0:
695  return (a <<= k);
696 
697  case 1:
698  a -= b;
699  while (a[0]==0)
700  a >>= 1;
701  break;
702 
703  default:
704  CRYPTOPP_ASSERT(false);
705  }
706  }
707 }
708 
709 Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
710 {
711  CRYPTOPP_ASSERT(b.Positive());
712 
713  if (a.Negative())
714  return EuclideanMultiplicativeInverse(a%b, b);
715 
716  if (b[0]==0)
717  {
718  if (!b || a[0]==0)
719  return Integer::Zero(); // no inverse
720  if (a==1)
721  return 1;
722  Integer u = EuclideanMultiplicativeInverse(b, a);
723  if (!u)
724  return Integer::Zero(); // no inverse
725  else
726  return (b*(a-u)+1)/a;
727  }
728 
729  Integer u=1, d=a, v1=b, v3=b, t1, t3, b2=(b+1)>>1;
730 
731  if (a[0])
732  {
733  t1 = Integer::Zero();
734  t3 = -b;
735  }
736  else
737  {
738  t1 = b2;
739  t3 = a>>1;
740  }
741 
742  while (!!t3)
743  {
744  while (t3[0]==0)
745  {
746  t3 >>= 1;
747  if (t1[0]==0)
748  t1 >>= 1;
749  else
750  {
751  t1 >>= 1;
752  t1 += b2;
753  }
754  }
755  if (t3.Positive())
756  {
757  u = t1;
758  d = t3;
759  }
760  else
761  {
762  v1 = b-t1;
763  v3 = -t3;
764  }
765  t1 = u-v1;
766  t3 = d-v3;
767  if (t1.Negative())
768  t1 += b;
769  }
770  if (d==1)
771  return u;
772  else
773  return Integer::Zero(); // no inverse
774 }
775 */
776 
777 int Jacobi(const Integer &aIn, const Integer &bIn)
778 {
779  CRYPTOPP_ASSERT(bIn.IsOdd());
780 
781  Integer b = bIn, a = aIn%bIn;
782  int result = 1;
783 
784  while (!!a)
785  {
786  unsigned i=0;
787  while (a.GetBit(i)==0)
788  i++;
789  a>>=i;
790 
791  if (i%2==1 && (b%8==3 || b%8==5))
792  result = -result;
793 
794  if (a%4==3 && b%4==3)
795  result = -result;
796 
797  std::swap(a, b);
798  a %= b;
799  }
800 
801  return (b==1) ? result : 0;
802 }
803 
804 Integer Lucas(const Integer &e, const Integer &pIn, const Integer &n)
805 {
806  unsigned i = e.BitCount();
807  if (i==0)
808  return Integer::Two();
809 
811  Integer p=m.ConvertIn(pIn%n), two=m.ConvertIn(Integer::Two());
812  Integer v=p, v1=m.Subtract(m.Square(p), two);
813 
814  i--;
815  while (i--)
816  {
817  if (e.GetBit(i))
818  {
819  // v = (v*v1 - p) % m;
820  v = m.Subtract(m.Multiply(v,v1), p);
821  // v1 = (v1*v1 - 2) % m;
822  v1 = m.Subtract(m.Square(v1), two);
823  }
824  else
825  {
826  // v1 = (v*v1 - p) % m;
827  v1 = m.Subtract(m.Multiply(v,v1), p);
828  // v = (v*v - 2) % m;
829  v = m.Subtract(m.Square(v), two);
830  }
831  }
832  return m.ConvertOut(v);
833 }
834 
835 // This is Peter Montgomery's unpublished Lucas sequence evaluation algorithm.
836 // The total number of multiplies and squares used is less than the binary
837 // algorithm (see above). Unfortunately I can't get it to run as fast as
838 // the binary algorithm because of the extra overhead.
839 /*
840 Integer Lucas(const Integer &n, const Integer &P, const Integer &modulus)
841 {
842  if (!n)
843  return 2;
844 
845 #define f(A, B, C) m.Subtract(m.Multiply(A, B), C)
846 #define X2(A) m.Subtract(m.Square(A), two)
847 #define X3(A) m.Multiply(A, m.Subtract(m.Square(A), three))
848 
849  MontgomeryRepresentation m(modulus);
850  Integer two=m.ConvertIn(2), three=m.ConvertIn(3);
851  Integer A=m.ConvertIn(P), B, C, p, d=n, e, r, t, T, U;
852 
853  while (d!=1)
854  {
855  p = d;
856  unsigned int b = WORD_BITS * p.WordCount();
857  Integer alpha = (Integer(5)<<(2*b-2)).SquareRoot() - Integer::Power2(b-1);
858  r = (p*alpha)>>b;
859  e = d-r;
860  B = A;
861  C = two;
862  d = r;
863 
864  while (d!=e)
865  {
866  if (d<e)
867  {
868  swap(d, e);
869  swap(A, B);
870  }
871 
872  unsigned int dm2 = d[0], em2 = e[0];
873  unsigned int dm3 = d%3, em3 = e%3;
874 
875 // if ((dm6+em6)%3 == 0 && d <= e + (e>>2))
876  if ((dm3+em3==0 || dm3+em3==3) && (t = e, t >>= 2, t += e, d <= t))
877  {
878  // #1
879 // t = (d+d-e)/3;
880 // t = d; t += d; t -= e; t /= 3;
881 // e = (e+e-d)/3;
882 // e += e; e -= d; e /= 3;
883 // d = t;
884 
885 // t = (d+e)/3
886  t = d; t += e; t /= 3;
887  e -= t;
888  d -= t;
889 
890  T = f(A, B, C);
891  U = f(T, A, B);
892  B = f(T, B, A);
893  A = U;
894  continue;
895  }
896 
897 // if (dm6 == em6 && d <= e + (e>>2))
898  if (dm3 == em3 && dm2 == em2 && (t = e, t >>= 2, t += e, d <= t))
899  {
900  // #2
901 // d = (d-e)>>1;
902  d -= e; d >>= 1;
903  B = f(A, B, C);
904  A = X2(A);
905  continue;
906  }
907 
908 // if (d <= (e<<2))
909  if (d <= (t = e, t <<= 2))
910  {
911  // #3
912  d -= e;
913  C = f(A, B, C);
914  swap(B, C);
915  continue;
916  }
917 
918  if (dm2 == em2)
919  {
920  // #4
921 // d = (d-e)>>1;
922  d -= e; d >>= 1;
923  B = f(A, B, C);
924  A = X2(A);
925  continue;
926  }
927 
928  if (dm2 == 0)
929  {
930  // #5
931  d >>= 1;
932  C = f(A, C, B);
933  A = X2(A);
934  continue;
935  }
936 
937  if (dm3 == 0)
938  {
939  // #6
940 // d = d/3 - e;
941  d /= 3; d -= e;
942  T = X2(A);
943  C = f(T, f(A, B, C), C);
944  swap(B, C);
945  A = f(T, A, A);
946  continue;
947  }
948 
949  if (dm3+em3==0 || dm3+em3==3)
950  {
951  // #7
952 // d = (d-e-e)/3;
953  d -= e; d -= e; d /= 3;
954  T = f(A, B, C);
955  B = f(T, A, B);
956  A = X3(A);
957  continue;
958  }
959 
960  if (dm3 == em3)
961  {
962  // #8
963 // d = (d-e)/3;
964  d -= e; d /= 3;
965  T = f(A, B, C);
966  C = f(A, C, B);
967  B = T;
968  A = X3(A);
969  continue;
970  }
971 
972  CRYPTOPP_ASSERT(em2 == 0);
973  // #9
974  e >>= 1;
975  C = f(C, B, A);
976  B = X2(B);
977  }
978 
979  A = f(A, B, C);
980  }
981 
982 #undef f
983 #undef X2
984 #undef X3
985 
986  return m.ConvertOut(A);
987 }
988 */
989 
990 Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
991 {
992  // Callers must ensure p and q are prime, GH #1249
993  CRYPTOPP_ASSERT(IsPrime(p) && IsPrime(q));
994 
995  // GCC warning bug, https://stackoverflow.com/q/12842306/608639
996 #ifdef _OPENMP
997  Integer d = (m*m-4), p2, q2;
998  #pragma omp parallel
999  #pragma omp sections
1000  {
1001  #pragma omp section
1002  {
1003  p2 = p-Jacobi(d,p);
1004  p2 = Lucas(EuclideanMultiplicativeInverse(e,p2), m, p);
1005  }
1006  #pragma omp section
1007  {
1008  q2 = q-Jacobi(d,q);
1009  q2 = Lucas(EuclideanMultiplicativeInverse(e,q2), m, q);
1010  }
1011  }
1012 #else
1013  const Integer d = (m*m-4);
1014  const Integer t1 = p-Jacobi(d,p);
1015  const Integer p2 = Lucas(EuclideanMultiplicativeInverse(e,t1), m, p);
1016 
1017  const Integer t2 = q-Jacobi(d,q);
1018  const Integer q2 = Lucas(EuclideanMultiplicativeInverse(e,t2), m, q);
1019 #endif
1020 
1021  return CRT(p2, p, q2, q, u);
1022 }
1023 
1024 unsigned int FactoringWorkFactor(unsigned int n)
1025 {
1026  // extrapolated from the table in Odlyzko's "The Future of Integer Factorization"
1027  // updated to reflect the factoring of RSA-130
1028  if (n<5) return 0;
1029  else return (unsigned int)(2.4 * std::pow((double)n, 1.0/3.0) * std::pow(log(double(n)), 2.0/3.0) - 5);
1030 }
1031 
1032 unsigned int DiscreteLogWorkFactor(unsigned int n)
1033 {
1034  // assuming discrete log takes about the same time as factoring
1035  if (n<5) return 0;
1036  else return (unsigned int)(2.4 * std::pow((double)n, 1.0/3.0) * std::pow(log(double(n)), 2.0/3.0) - 5);
1037 }
1038 
1039 // ********************************************************
1040 
1041 void PrimeAndGenerator::Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits)
1042 {
1043  // no prime exists for delta = -1, qbits = 4, and pbits = 5
1044  CRYPTOPP_ASSERT(qbits > 4);
1045  CRYPTOPP_ASSERT(pbits > qbits);
1046 
1047  if (qbits+1 == pbits)
1048  {
1049  Integer minP = Integer::Power2(pbits-1);
1050  Integer maxP = Integer::Power2(pbits) - 1;
1051  bool success = false;
1052 
1053  while (!success)
1054  {
1055  p.Randomize(rng, minP, maxP, Integer::ANY, 6+5*delta, 12);
1056  PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*12, maxP), 12, delta);
1057 
1058  while (sieve.NextCandidate(p))
1059  {
1061  q = (p-delta) >> 1;
1063  if (FastProbablePrimeTest(q) && FastProbablePrimeTest(p) && IsPrime(q) && IsPrime(p))
1064  {
1065  success = true;
1066  break;
1067  }
1068  }
1069  }
1070 
1071  if (delta == 1)
1072  {
1073  // find g such that g is a quadratic residue mod p, then g has order q
1074  // g=4 always works, but this way we get the smallest quadratic residue (other than 1)
1075  for (g=2; Jacobi(g, p) != 1; ++g) {}
1076  // contributed by Walt Tuvell: g should be the following according to the Law of Quadratic Reciprocity
1077  CRYPTOPP_ASSERT((p%8==1 || p%8==7) ? g==2 : (p%12==1 || p%12==11) ? g==3 : g==4);
1078  }
1079  else
1080  {
1081  CRYPTOPP_ASSERT(delta == -1);
1082  // find g such that g*g-4 is a quadratic non-residue,
1083  // and such that g has order q
1084  for (g=3; ; ++g)
1085  if (Jacobi(g*g-4, p)==-1 && Lucas(q, g, p)==2)
1086  break;
1087  }
1088  }
1089  else
1090  {
1091  Integer minQ = Integer::Power2(qbits-1);
1092  Integer maxQ = Integer::Power2(qbits) - 1;
1093  Integer minP = Integer::Power2(pbits-1);
1094  Integer maxP = Integer::Power2(pbits) - 1;
1095 
1096  do
1097  {
1098  q.Randomize(rng, minQ, maxQ, Integer::PRIME);
1099  } while (!p.Randomize(rng, minP, maxP, Integer::PRIME, delta%q, q));
1100 
1101  // find a random g of order q
1102  if (delta==1)
1103  {
1104  do
1105  {
1106  Integer h(rng, 2, p-2, Integer::ANY);
1107  g = a_exp_b_mod_c(h, (p-1)/q, p);
1108  } while (g <= 1);
1109  CRYPTOPP_ASSERT(a_exp_b_mod_c(g, q, p)==1);
1110  }
1111  else
1112  {
1113  CRYPTOPP_ASSERT(delta==-1);
1114  do
1115  {
1116  Integer h(rng, 3, p-1, Integer::ANY);
1117  if (Jacobi(h*h-4, p)==1)
1118  continue;
1119  g = Lucas((p+1)/q, h, p);
1120  } while (g <= 2);
1121  CRYPTOPP_ASSERT(Lucas(q, g, p) == 2);
1122  }
1123  }
1124 }
1125 
1126 NAMESPACE_END
1127 
1128 #endif
Classes for working with NameValuePairs.
AlgorithmParameters MakeParameters(const char *name, const T &value, bool throwIfNotUsed=true)
Create an object that implements NameValuePairs.
Definition: algparam.h:508
An object that implements NameValuePairs.
Definition: algparam.h:426
Multiple precision integer with arithmetic operations.
Definition: integer.h:50
bool GetBit(size_t i) const
Provides the i-th bit of the Integer.
bool IsPositive() const
Determines if the Integer is positive.
Definition: integer.h:347
signed long ConvertToLong() const
Convert the Integer to Long.
bool IsSquare() const
Determine whether this integer is a perfect square.
void Randomize(RandomNumberGenerator &rng, size_t bitCount)
Set this Integer to random integer.
static Integer Power2(size_t e)
Exponentiates to a power of 2.
Integer Squared() const
Multiply this integer by itself.
Definition: integer.h:634
static const Integer & One()
Integer representing 1.
unsigned int BitCount() const
Determines the number of bits required to represent the Integer.
unsigned int WordCount() const
Determines the number of words required to represent the Integer.
@ ANY
a number with no special properties
Definition: integer.h:93
@ PRIME
a number which is probabilistically prime
Definition: integer.h:95
static const Integer & Zero()
Integer representing 0.
bool IsNegative() const
Determines if the Integer is negative.
Definition: integer.h:341
static const Integer & Two()
Integer representing 2.
bool IsOdd() const
Determines if the Integer is odd parity.
Definition: integer.h:356
Integer InverseMod(const Integer &n) const
Calculate multiplicative inverse.
bool IsEven() const
Determines if the Integer is even parity.
Definition: integer.h:353
An invalid argument was detected.
Definition: cryptlib.h:208
Performs modular arithmetic in Montgomery representation for increased speed.
Definition: modarith.h:296
void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits)
Generate a Prime and Generator.
Application callback to signal suitability of a candidate prime.
Definition: nbtheory.h:117
Interface for random number generators.
Definition: cryptlib.h:1440
virtual word32 GenerateWord32(word32 min=0, word32 max=0xffffffffUL)
Generate a random 32 bit word in the range min to max, inclusive.
Restricts the instantiation of a class to one static object without locks.
Definition: misc.h:309
word64 word
Full word used for multiprecision integer arithmetic.
Definition: config_int.h:192
unsigned int word32
32-bit unsigned datatype
Definition: config_int.h:72
unsigned short word16
16-bit unsigned datatype
Definition: config_int.h:69
Multiple precision integer with arithmetic operations.
Utility functions for the Crypto++ library.
bool SafeConvert(T1 from, T2 &to)
Perform a conversion from from to to.
Definition: misc.h:718
const T & STDMIN(const T &a, const T &b)
Replacement function for std::min.
Definition: misc.h:657
Class file for performing modular arithmetic.
Crypto++ library namespace.
Classes and functions for number theoretic operations.
CRYPTOPP_DLL int Jacobi(const Integer &a, const Integer &b)
Calculate the Jacobi symbol.
CRYPTOPP_DLL bool IsPrime(const Integer &p)
Verifies a number is probably prime.
CRYPTOPP_DLL Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
Generates a provable prime.
CRYPTOPP_DLL bool IsStrongLucasProbablePrime(const Integer &n)
Determine if a number is probably prime.
CRYPTOPP_DLL unsigned int DiscreteLogWorkFactor(unsigned int bitlength)
Estimate work factor.
Integer ModularExponentiation(const Integer &x, const Integer &e, const Integer &m)
Modular exponentiation.
Definition: nbtheory.h:219
CRYPTOPP_DLL Integer ModularSquareRoot(const Integer &a, const Integer &p)
Extract a modular square root.
CRYPTOPP_DLL const word16 * GetPrimeTable(unsigned int &size)
The Small Prime table.
CRYPTOPP_DLL bool IsSmallPrime(const Integer &p)
Tests whether a number is a small prime.
CRYPTOPP_DLL bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p)
Solve a Modular Quadratic Equation.
CRYPTOPP_DLL bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
Determine if a number is probably prime.
CRYPTOPP_DLL Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
Generates a provable prime.
CRYPTOPP_DLL Integer Lucas(const Integer &e, const Integer &p, const Integer &n)
Calculate the Lucas value.
CRYPTOPP_DLL Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
Calculate the inverse Lucas value.
CRYPTOPP_DLL bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level=1)
Verifies a number is probably prime.
CRYPTOPP_DLL Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u)
Extract a modular root.
Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
Calculate multiplicative inverse.
Definition: nbtheory.h:169
CRYPTOPP_DLL bool SmallDivisorsTest(const Integer &p)
Tests whether a number is divisible by a small prime.
CRYPTOPP_DLL bool IsLucasProbablePrime(const Integer &n)
Determine if a number is probably prime.
Integer GCD(const Integer &a, const Integer &b)
Calculate the greatest common divisor.
Definition: nbtheory.h:146
CRYPTOPP_DLL bool TrialDivision(const Integer &p, unsigned bound)
Tests whether a number is divisible by a small prime.
CRYPTOPP_DLL unsigned int FactoringWorkFactor(unsigned int bitlength)
Estimate work factor.
CRYPTOPP_DLL bool IsFermatProbablePrime(const Integer &n, const Integer &b)
Determine if a number is probably prime.
CRYPTOPP_DLL Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
Chinese Remainder Theorem.
CRYPTOPP_DLL bool IsStrongProbablePrime(const Integer &n, const Integer &b)
Determine if a number is probably prime.
CRYPTOPP_DLL bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
Finds a random prime of special form.
Precompiled header file.
void swap(::SecBlock< T, A > &a, ::SecBlock< T, A > &b)
Swap two SecBlocks.
Definition: secblock.h:1289
Classes for automatic resource management.
Common C++ header files.
Debugging and diagnostic assertions.
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:68