Crypto++ 8.9
Free C++ class library of cryptographic schemes
nbtheory.cpp
1// nbtheory.cpp - originally written and placed in the public domain by Wei Dai
2
3#include "pch.h"
4
5#ifndef CRYPTOPP_IMPORTS
6
7#include "nbtheory.h"
8#include "integer.h"
9#include "modarith.h"
10#include "algparam.h"
11#include "smartptr.h"
12#include "misc.h"
13#include "stdcpp.h"
14#include "trap.h"
15
16#ifdef _OPENMP
17# include <omp.h>
18#endif
19
20NAMESPACE_BEGIN(CryptoPP)
21
22// Keep sync'd with primetab.cpp
23const unsigned int maxPrimeTableSize = 3511;
24const word s_lastSmallPrime = 32719;
25
26const word16 * GetPrimeTable(unsigned int &size)
27{
28 extern const word16 precomputedPrimeTable[maxPrimeTableSize];
29 size = maxPrimeTableSize;
30 return precomputedPrimeTable;
31}
32
33bool IsSmallPrime(const Integer &p)
34{
35 unsigned int primeTableSize;
36 const word16 * primeTable = GetPrimeTable(primeTableSize);
37
38 if (p.IsPositive() && p <= primeTable[primeTableSize-1])
39 return std::binary_search(primeTable, primeTable+primeTableSize, (word16)p.ConvertToLong());
40 else
41 return false;
42}
43
44bool TrialDivision(const Integer &p, unsigned bound)
45{
46 unsigned int primeTableSize;
47 const word16 * primeTable = GetPrimeTable(primeTableSize);
48
49 CRYPTOPP_ASSERT(primeTable[primeTableSize-1] >= bound);
50
51 unsigned int i;
52 for (i = 0; primeTable[i]<bound; i++)
53 if ((p % primeTable[i]) == 0)
54 return true;
55
56 if (bound == primeTable[i])
57 return (p % bound == 0);
58 else
59 return false;
60}
61
62bool SmallDivisorsTest(const Integer &p)
63{
64 unsigned int primeTableSize;
65 const word16 * primeTable = GetPrimeTable(primeTableSize);
66 return !TrialDivision(p, primeTable[primeTableSize-1]);
67}
68
69bool IsFermatProbablePrime(const Integer &n, const Integer &b)
70{
71 if (n <= 3)
72 return n==2 || n==3;
73
74 CRYPTOPP_ASSERT(n>3 && b>1 && b<n-1);
75 return a_exp_b_mod_c(b, n-1, n)==1;
76}
77
78bool IsStrongProbablePrime(const Integer &n, const Integer &b)
79{
80 if (n <= 3)
81 return n==2 || n==3;
82
83 CRYPTOPP_ASSERT(n>3 && b>1 && b<n-1);
84
85 if ((n.IsEven() && n!=2) || GCD(b, n) != 1)
86 return false;
87
88 Integer nminus1 = (n-1);
89 unsigned int a;
90
91 // calculate a = largest power of 2 that divides (n-1)
92 for (a=0; ; a++)
93 if (nminus1.GetBit(a))
94 break;
95 Integer m = nminus1>>a;
96
97 Integer z = a_exp_b_mod_c(b, m, n);
98 if (z==1 || z==nminus1)
99 return true;
100 for (unsigned j=1; j<a; j++)
101 {
102 z = z.Squared()%n;
103 if (z==nminus1)
104 return true;
105 if (z==1)
106 return false;
107 }
108 return false;
109}
110
111bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
112{
113 if (n <= 3)
114 return n==2 || n==3;
115
116 CRYPTOPP_ASSERT(n>3);
117
118 Integer b;
119 for (unsigned int i=0; i<rounds; i++)
120 {
121 b.Randomize(rng, 2, n-2);
122 if (!IsStrongProbablePrime(n, b))
123 return false;
124 }
125 return true;
126}
127
128bool IsLucasProbablePrime(const Integer &n)
129{
130 if (n <= 1)
131 return false;
132
133 if (n.IsEven())
134 return n==2;
135
136 CRYPTOPP_ASSERT(n>2);
137
138 Integer b=3;
139 unsigned int i=0;
140 int j;
141
142 while ((j=Jacobi(b.Squared()-4, n)) == 1)
143 {
144 if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square
145 return false;
146 ++b; ++b;
147 }
148
149 if (j==0)
150 return false;
151 else
152 return Lucas(n+1, b, n)==2;
153}
154
156{
157 if (n <= 1)
158 return false;
159
160 if (n.IsEven())
161 return n==2;
162
163 CRYPTOPP_ASSERT(n>2);
164
165 Integer b=3;
166 unsigned int i=0;
167 int j;
168
169 while ((j=Jacobi(b.Squared()-4, n)) == 1)
170 {
171 if (++i==64 && n.IsSquare()) // avoid infinite loop if n is a square
172 return false;
173 ++b; ++b;
174 }
175
176 if (j==0)
177 return false;
178
179 Integer n1 = n+1;
180 unsigned int a;
181
182 // calculate a = largest power of 2 that divides n1
183 for (a=0; ; a++)
184 if (n1.GetBit(a))
185 break;
186 Integer m = n1>>a;
187
188 Integer z = Lucas(m, b, n);
189 if (z==2 || z==n-2)
190 return true;
191 for (i=1; i<a; i++)
192 {
193 z = (z.Squared()-2)%n;
194 if (z==n-2)
195 return true;
196 if (z==2)
197 return false;
198 }
199 return false;
200}
201
202struct NewLastSmallPrimeSquared
203{
204 Integer * operator()() const
205 {
206 return new Integer(Integer(s_lastSmallPrime).Squared());
207 }
208};
209
210bool IsPrime(const Integer &p)
211{
212 if (p <= s_lastSmallPrime)
213 return IsSmallPrime(p);
215 return SmallDivisorsTest(p);
216 else
218}
219
220bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level)
221{
222 bool pass = IsPrime(p) && RabinMillerTest(rng, p, 1);
223 if (level >= 1)
224 pass = pass && RabinMillerTest(rng, p, 10);
225 return pass;
226}
227
228unsigned int PrimeSearchInterval(const Integer &max)
229{
230 return max.BitCount();
231}
232
233static inline bool FastProbablePrimeTest(const Integer &n)
234{
235 return IsStrongProbablePrime(n,2);
236}
237
238AlgorithmParameters MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength)
239{
240 if (productBitLength < 16)
241 throw InvalidArgument("invalid bit length");
242
243 Integer minP, maxP;
244
245 if (productBitLength%2==0)
246 {
247 minP = Integer(182) << (productBitLength/2-8);
248 maxP = Integer::Power2(productBitLength/2)-1;
249 }
250 else
251 {
252 minP = Integer::Power2((productBitLength-1)/2);
253 maxP = Integer(181) << ((productBitLength+1)/2-8);
254 }
255
256 return MakeParameters("RandomNumberType", Integer::PRIME)("Min", minP)("Max", maxP);
257}
258
259class PrimeSieve
260{
261public:
262 // delta == 1 or -1 means double sieve with p = 2*q + delta
263 PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta=0);
264 bool NextCandidate(Integer &c);
265
266 void DoSieve();
267 static void SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv);
268
269 Integer m_first, m_last, m_step;
270 signed int m_delta;
271 word m_next;
272 std::vector<bool> m_sieve;
273};
274
275PrimeSieve::PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta)
276 : m_first(first), m_last(last), m_step(step), m_delta(delta), m_next(0)
277{
278 DoSieve();
279}
280
281bool PrimeSieve::NextCandidate(Integer &c)
282{
283 bool safe = SafeConvert(std::find(m_sieve.begin()+m_next, m_sieve.end(), false) - m_sieve.begin(), m_next);
284 CRYPTOPP_UNUSED(safe); CRYPTOPP_ASSERT(safe);
285 if (m_next == m_sieve.size())
286 {
287 m_first += long(m_sieve.size())*m_step;
288 if (m_first > m_last)
289 return false;
290 else
291 {
292 m_next = 0;
293 DoSieve();
294 return NextCandidate(c);
295 }
296 }
297 else
298 {
299 c = m_first + long(m_next)*m_step;
300 ++m_next;
301 return true;
302 }
303}
304
305void PrimeSieve::SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv)
306{
307 if (stepInv)
308 {
309 size_t sieveSize = sieve.size();
310 size_t j = (word32(p-(first%p))*stepInv) % p;
311 // if the first multiple of p is p, skip it
312 if (first.WordCount() <= 1 && first + step*long(j) == p)
313 j += p;
314 for (; j < sieveSize; j += p)
315 sieve[j] = true;
316 }
317}
318
319void PrimeSieve::DoSieve()
320{
321 unsigned int primeTableSize;
322 const word16 * primeTable = GetPrimeTable(primeTableSize);
323
324 const unsigned int maxSieveSize = 32768;
325 unsigned int sieveSize = STDMIN(Integer(maxSieveSize), (m_last-m_first)/m_step+1).ConvertToLong();
326
327 m_sieve.clear();
328 m_sieve.resize(sieveSize, false);
329
330 if (m_delta == 0)
331 {
332 for (unsigned int i = 0; i < primeTableSize; ++i)
333 SieveSingle(m_sieve, primeTable[i], m_first, m_step, (word16)m_step.InverseMod(primeTable[i]));
334 }
335 else
336 {
337 CRYPTOPP_ASSERT(m_step%2==0);
338 Integer qFirst = (m_first-m_delta) >> 1;
339 Integer halfStep = m_step >> 1;
340 for (unsigned int i = 0; i < primeTableSize; ++i)
341 {
342 word16 p = primeTable[i];
343 word16 stepInv = (word16)m_step.InverseMod(p);
344 SieveSingle(m_sieve, p, m_first, m_step, stepInv);
345
346 word16 halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p;
347 SieveSingle(m_sieve, p, qFirst, halfStep, halfStepInv);
348 }
349 }
350}
351
352bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
353{
354 CRYPTOPP_ASSERT(!equiv.IsNegative() && equiv < mod);
355
356 Integer gcd = GCD(equiv, mod);
357 if (gcd != Integer::One())
358 {
359 // the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)
360 if (p <= gcd && gcd <= max && IsPrime(gcd) && (!pSelector || pSelector->IsAcceptable(gcd)))
361 {
362 p = gcd;
363 return true;
364 }
365 else
366 return false;
367 }
368
369 unsigned int primeTableSize;
370 const word16 * primeTable = GetPrimeTable(primeTableSize);
371
372 if (p <= primeTable[primeTableSize-1])
373 {
374 const word16 *pItr;
375
376 --p;
377 if (p.IsPositive())
378 pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong());
379 else
380 pItr = primeTable;
381
382 while (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector->IsAcceptable(*pItr))))
383 ++pItr;
384
385 if (pItr < primeTable+primeTableSize)
386 {
387 p = *pItr;
388 return p <= max;
389 }
390
391 p = primeTable[primeTableSize-1]+1;
392 }
393
394 CRYPTOPP_ASSERT(p > primeTable[primeTableSize-1]);
395
396 if (mod.IsOdd())
397 return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);
398
399 p += (equiv-p)%mod;
400
401 if (p>max)
402 return false;
403
404 PrimeSieve sieve(p, max, mod);
405
406 while (sieve.NextCandidate(p))
407 {
408 if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p))
409 return true;
410 }
411
412 return false;
413}
414
415// the following two functions are based on code and comments provided by Preda Mihailescu
416static bool ProvePrime(const Integer &p, const Integer &q)
417{
418 CRYPTOPP_ASSERT(p < q*q*q);
419 CRYPTOPP_ASSERT(p % q == 1);
420
421// this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test
422// for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q,
423// or be prime. The next two lines build the discriminant of a quadratic equation
424// which holds iff p is built up of two factors (exercise ... )
425
426 Integer r = (p-1)/q;
427 if (((r%q).Squared()-4*(r/q)).IsSquare())
428 return false;
429
430 unsigned int primeTableSize;
431 const word16 * primeTable = GetPrimeTable(primeTableSize);
432
433 CRYPTOPP_ASSERT(primeTableSize >= 50);
434 for (int i=0; i<50; i++)
435 {
436 Integer b = a_exp_b_mod_c(primeTable[i], r, p);
437 if (b != 1)
438 return a_exp_b_mod_c(b, q, p) == 1;
439 }
440 return false;
441}
442
444{
445 Integer p;
446 Integer minP = Integer::Power2(pbits-1);
447 Integer maxP = Integer::Power2(pbits) - 1;
448
449 if (maxP <= Integer(s_lastSmallPrime).Squared())
450 {
451 // Randomize() will generate a prime provable by trial division
452 p.Randomize(rng, minP, maxP, Integer::PRIME);
453 return p;
454 }
455
456 unsigned int qbits = (pbits+2)/3 + 1 + rng.GenerateWord32(0, pbits/36);
457 Integer q = MihailescuProvablePrime(rng, qbits);
458 Integer q2 = q<<1;
459
460 while (true)
461 {
462 // this initializes the sieve to search in the arithmetic
463 // progression p = p_0 + \lambda * q2 = p_0 + 2 * \lambda * q,
464 // with q the recursively generated prime above. We will be able
465 // to use Lucas tets for proving primality. A trick of Quisquater
466 // allows taking q > cubic_root(p) rather than square_root: this
467 // decreases the recursion.
468
469 p.Randomize(rng, minP, maxP, Integer::ANY, 1, q2);
470 PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*q2, maxP), q2);
471
472 while (sieve.NextCandidate(p))
473 {
474 if (FastProbablePrimeTest(p) && ProvePrime(p, q))
475 return p;
476 }
477 }
478
479 // not reached
480 return p;
481}
482
484{
485 const unsigned smallPrimeBound = 29, c_opt=10;
486 Integer p;
487
488 unsigned int primeTableSize;
489 const word16 * primeTable = GetPrimeTable(primeTableSize);
490
491 if (bits < smallPrimeBound)
492 {
493 do
494 p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2);
495 while (TrialDivision(p, 1 << ((bits+1)/2)));
496 }
497 else
498 {
499 const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
500 double relativeSize;
501 do
502 relativeSize = std::pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1);
503 while (bits * relativeSize >= bits - margin);
504
505 Integer a,b;
506 Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize));
507 Integer I = Integer::Power2(bits-2)/q;
508 Integer I2 = I << 1;
509 unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
510 bool success = false;
511 while (!success)
512 {
513 p.Randomize(rng, I, I2, Integer::ANY);
514 p *= q; p <<= 1; ++p;
515 if (!TrialDivision(p, trialDivisorBound))
516 {
517 a.Randomize(rng, 2, p-1, Integer::ANY);
518 b = a_exp_b_mod_c(a, (p-1)/q, p);
519 success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
520 }
521 }
522 }
523 return p;
524}
525
526Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
527{
528 // isn't operator overloading great?
529 return p * (u * (xq-xp) % q) + xp;
530/*
531 Integer t1 = xq-xp;
532 cout << hex << t1 << endl;
533 Integer t2 = u * t1;
534 cout << hex << t2 << endl;
535 Integer t3 = t2 % q;
536 cout << hex << t3 << endl;
537 Integer t4 = p * t3;
538 cout << hex << t4 << endl;
539 Integer t5 = t4 + xp;
540 cout << hex << t5 << endl;
541 return t5;
542*/
543}
544
545Integer ModularSquareRoot(const Integer &a, const Integer &p)
546{
547 // Callers must ensure p is prime, GH #1249
549
550 if (p%4 == 3)
551 return a_exp_b_mod_c(a, (p+1)/4, p);
552
553 Integer q=p-1;
554 unsigned int r=0;
555 while (q.IsEven())
556 {
557 r++;
558 q >>= 1;
559 }
560
561 Integer n=2;
562 while (Jacobi(n, p) != -1)
563 ++n;
564
565 Integer y = a_exp_b_mod_c(n, q, p);
566 Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
567 Integer b = (x.Squared()%p)*a%p;
568 x = a*x%p;
569 Integer tempb, t;
570
571 while (b != 1)
572 {
573 unsigned m=0;
574 tempb = b;
575 do
576 {
577 m++;
578 b = b.Squared()%p;
579 if (m==r)
580 return Integer::Zero();
581 }
582 while (b != 1);
583
584 t = y;
585 for (unsigned i=0; i<r-m-1; i++)
586 t = t.Squared()%p;
587 y = t.Squared()%p;
588 r = m;
589 x = x*t%p;
590 b = tempb*y%p;
591 }
592
593 CRYPTOPP_ASSERT(x.Squared()%p == a);
594 return x;
595}
596
597bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p)
598{
599 // Callers must ensure p is prime, GH #1249
601
602 Integer D = (b.Squared() - 4*a*c) % p;
603 switch (Jacobi(D, p))
604 {
605 default:
606 CRYPTOPP_ASSERT(false); // not reached
607 return false;
608 case -1:
609 return false;
610 case 0:
611 r1 = r2 = (-b*(a+a).InverseMod(p)) % p;
612 CRYPTOPP_ASSERT(((r1.Squared()*a + r1*b + c) % p).IsZero());
613 return true;
614 case 1:
615 Integer s = ModularSquareRoot(D, p);
616 Integer t = (a+a).InverseMod(p);
617 r1 = (s-b)*t % p;
618 r2 = (-s-b)*t % p;
619 CRYPTOPP_ASSERT(((r1.Squared()*a + r1*b + c) % p).IsZero());
620 CRYPTOPP_ASSERT(((r2.Squared()*a + r2*b + c) % p).IsZero());
621 return true;
622 }
623}
624
625Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq,
626 const Integer &p, const Integer &q, const Integer &u)
627{
628 // Callers must ensure p and q are prime, GH #1249
630
631 // GCC warning bug, https://stackoverflow.com/q/12842306/608639
632#ifdef _OPENMP
633 Integer p2, q2;
634 #pragma omp parallel
635 #pragma omp sections
636 {
637 #pragma omp section
638 p2 = ModularExponentiation((a % p), dp, p);
639 #pragma omp section
640 q2 = ModularExponentiation((a % q), dq, q);
641 }
642#else
643 const Integer p2 = ModularExponentiation((a % p), dp, p);
644 const Integer q2 = ModularExponentiation((a % q), dq, q);
645#endif
646
647 return CRT(p2, p, q2, q, u);
648}
649
650Integer ModularRoot(const Integer &a, const Integer &e,
651 const Integer &p, const Integer &q)
652{
653 // Callers must ensure p and q are prime, GH #1249
655
659 CRYPTOPP_ASSERT(!!dp && !!dq && !!u);
660 return ModularRoot(a, dp, dq, p, q, u);
661}
662
663/*
664Integer GCDI(const Integer &x, const Integer &y)
665{
666 Integer a=x, b=y;
667 unsigned k=0;
668
669 CRYPTOPP_ASSERT(!!a && !!b);
670
671 while (a[0]==0 && b[0]==0)
672 {
673 a >>= 1;
674 b >>= 1;
675 k++;
676 }
677
678 while (a[0]==0)
679 a >>= 1;
680
681 while (b[0]==0)
682 b >>= 1;
683
684 while (1)
685 {
686 switch (a.Compare(b))
687 {
688 case -1:
689 b -= a;
690 while (b[0]==0)
691 b >>= 1;
692 break;
693
694 case 0:
695 return (a <<= k);
696
697 case 1:
698 a -= b;
699 while (a[0]==0)
700 a >>= 1;
701 break;
702
703 default:
704 CRYPTOPP_ASSERT(false);
705 }
706 }
707}
708
709Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
710{
711 CRYPTOPP_ASSERT(b.Positive());
712
713 if (a.Negative())
714 return EuclideanMultiplicativeInverse(a%b, b);
715
716 if (b[0]==0)
717 {
718 if (!b || a[0]==0)
719 return Integer::Zero(); // no inverse
720 if (a==1)
721 return 1;
722 Integer u = EuclideanMultiplicativeInverse(b, a);
723 if (!u)
724 return Integer::Zero(); // no inverse
725 else
726 return (b*(a-u)+1)/a;
727 }
728
729 Integer u=1, d=a, v1=b, v3=b, t1, t3, b2=(b+1)>>1;
730
731 if (a[0])
732 {
733 t1 = Integer::Zero();
734 t3 = -b;
735 }
736 else
737 {
738 t1 = b2;
739 t3 = a>>1;
740 }
741
742 while (!!t3)
743 {
744 while (t3[0]==0)
745 {
746 t3 >>= 1;
747 if (t1[0]==0)
748 t1 >>= 1;
749 else
750 {
751 t1 >>= 1;
752 t1 += b2;
753 }
754 }
755 if (t3.Positive())
756 {
757 u = t1;
758 d = t3;
759 }
760 else
761 {
762 v1 = b-t1;
763 v3 = -t3;
764 }
765 t1 = u-v1;
766 t3 = d-v3;
767 if (t1.Negative())
768 t1 += b;
769 }
770 if (d==1)
771 return u;
772 else
773 return Integer::Zero(); // no inverse
774}
775*/
776
777int Jacobi(const Integer &aIn, const Integer &bIn)
778{
779 CRYPTOPP_ASSERT(bIn.IsOdd());
780
781 Integer b = bIn, a = aIn%bIn;
782 int result = 1;
783
784 while (!!a)
785 {
786 unsigned i=0;
787 while (a.GetBit(i)==0)
788 i++;
789 a>>=i;
790
791 if (i%2==1 && (b%8==3 || b%8==5))
792 result = -result;
793
794 if (a%4==3 && b%4==3)
795 result = -result;
796
797 std::swap(a, b);
798 a %= b;
799 }
800
801 return (b==1) ? result : 0;
802}
803
804Integer Lucas(const Integer &e, const Integer &pIn, const Integer &n)
805{
806 unsigned i = e.BitCount();
807 if (i==0)
808 return Integer::Two();
809
811 Integer p=m.ConvertIn(pIn%n), two=m.ConvertIn(Integer::Two());
812 Integer v=p, v1=m.Subtract(m.Square(p), two);
813
814 i--;
815 while (i--)
816 {
817 if (e.GetBit(i))
818 {
819 // v = (v*v1 - p) % m;
820 v = m.Subtract(m.Multiply(v,v1), p);
821 // v1 = (v1*v1 - 2) % m;
822 v1 = m.Subtract(m.Square(v1), two);
823 }
824 else
825 {
826 // v1 = (v*v1 - p) % m;
827 v1 = m.Subtract(m.Multiply(v,v1), p);
828 // v = (v*v - 2) % m;
829 v = m.Subtract(m.Square(v), two);
830 }
831 }
832 return m.ConvertOut(v);
833}
834
835// This is Peter Montgomery's unpublished Lucas sequence evaluation algorithm.
836// The total number of multiplies and squares used is less than the binary
837// algorithm (see above). Unfortunately I can't get it to run as fast as
838// the binary algorithm because of the extra overhead.
839/*
840Integer Lucas(const Integer &n, const Integer &P, const Integer &modulus)
841{
842 if (!n)
843 return 2;
844
845#define f(A, B, C) m.Subtract(m.Multiply(A, B), C)
846#define X2(A) m.Subtract(m.Square(A), two)
847#define X3(A) m.Multiply(A, m.Subtract(m.Square(A), three))
848
849 MontgomeryRepresentation m(modulus);
850 Integer two=m.ConvertIn(2), three=m.ConvertIn(3);
851 Integer A=m.ConvertIn(P), B, C, p, d=n, e, r, t, T, U;
852
853 while (d!=1)
854 {
855 p = d;
856 unsigned int b = WORD_BITS * p.WordCount();
857 Integer alpha = (Integer(5)<<(2*b-2)).SquareRoot() - Integer::Power2(b-1);
858 r = (p*alpha)>>b;
859 e = d-r;
860 B = A;
861 C = two;
862 d = r;
863
864 while (d!=e)
865 {
866 if (d<e)
867 {
868 swap(d, e);
869 swap(A, B);
870 }
871
872 unsigned int dm2 = d[0], em2 = e[0];
873 unsigned int dm3 = d%3, em3 = e%3;
874
875// if ((dm6+em6)%3 == 0 && d <= e + (e>>2))
876 if ((dm3+em3==0 || dm3+em3==3) && (t = e, t >>= 2, t += e, d <= t))
877 {
878 // #1
879// t = (d+d-e)/3;
880// t = d; t += d; t -= e; t /= 3;
881// e = (e+e-d)/3;
882// e += e; e -= d; e /= 3;
883// d = t;
884
885// t = (d+e)/3
886 t = d; t += e; t /= 3;
887 e -= t;
888 d -= t;
889
890 T = f(A, B, C);
891 U = f(T, A, B);
892 B = f(T, B, A);
893 A = U;
894 continue;
895 }
896
897// if (dm6 == em6 && d <= e + (e>>2))
898 if (dm3 == em3 && dm2 == em2 && (t = e, t >>= 2, t += e, d <= t))
899 {
900 // #2
901// d = (d-e)>>1;
902 d -= e; d >>= 1;
903 B = f(A, B, C);
904 A = X2(A);
905 continue;
906 }
907
908// if (d <= (e<<2))
909 if (d <= (t = e, t <<= 2))
910 {
911 // #3
912 d -= e;
913 C = f(A, B, C);
914 swap(B, C);
915 continue;
916 }
917
918 if (dm2 == em2)
919 {
920 // #4
921// d = (d-e)>>1;
922 d -= e; d >>= 1;
923 B = f(A, B, C);
924 A = X2(A);
925 continue;
926 }
927
928 if (dm2 == 0)
929 {
930 // #5
931 d >>= 1;
932 C = f(A, C, B);
933 A = X2(A);
934 continue;
935 }
936
937 if (dm3 == 0)
938 {
939 // #6
940// d = d/3 - e;
941 d /= 3; d -= e;
942 T = X2(A);
943 C = f(T, f(A, B, C), C);
944 swap(B, C);
945 A = f(T, A, A);
946 continue;
947 }
948
949 if (dm3+em3==0 || dm3+em3==3)
950 {
951 // #7
952// d = (d-e-e)/3;
953 d -= e; d -= e; d /= 3;
954 T = f(A, B, C);
955 B = f(T, A, B);
956 A = X3(A);
957 continue;
958 }
959
960 if (dm3 == em3)
961 {
962 // #8
963// d = (d-e)/3;
964 d -= e; d /= 3;
965 T = f(A, B, C);
966 C = f(A, C, B);
967 B = T;
968 A = X3(A);
969 continue;
970 }
971
972 CRYPTOPP_ASSERT(em2 == 0);
973 // #9
974 e >>= 1;
975 C = f(C, B, A);
976 B = X2(B);
977 }
978
979 A = f(A, B, C);
980 }
981
982#undef f
983#undef X2
984#undef X3
985
986 return m.ConvertOut(A);
987}
988*/
989
990Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
991{
992 // Callers must ensure p and q are prime, GH #1249
994
995 // GCC warning bug, https://stackoverflow.com/q/12842306/608639
996#ifdef _OPENMP
997 Integer d = (m*m-4), p2, q2;
998 #pragma omp parallel
999 #pragma omp sections
1000 {
1001 #pragma omp section
1002 {
1003 p2 = p-Jacobi(d,p);
1004 p2 = Lucas(EuclideanMultiplicativeInverse(e,p2), m, p);
1005 }
1006 #pragma omp section
1007 {
1008 q2 = q-Jacobi(d,q);
1009 q2 = Lucas(EuclideanMultiplicativeInverse(e,q2), m, q);
1010 }
1011 }
1012#else
1013 const Integer d = (m*m-4);
1014 const Integer t1 = p-Jacobi(d,p);
1015 const Integer p2 = Lucas(EuclideanMultiplicativeInverse(e,t1), m, p);
1016
1017 const Integer t2 = q-Jacobi(d,q);
1018 const Integer q2 = Lucas(EuclideanMultiplicativeInverse(e,t2), m, q);
1019#endif
1020
1021 return CRT(p2, p, q2, q, u);
1022}
1023
1024unsigned int FactoringWorkFactor(unsigned int n)
1025{
1026 // extrapolated from the table in Odlyzko's "The Future of Integer Factorization"
1027 // updated to reflect the factoring of RSA-130
1028 if (n<5) return 0;
1029 else return (unsigned int)(2.4 * std::pow((double)n, 1.0/3.0) * std::pow(log(double(n)), 2.0/3.0) - 5);
1030}
1031
1032unsigned int DiscreteLogWorkFactor(unsigned int n)
1033{
1034 // assuming discrete log takes about the same time as factoring
1035 if (n<5) return 0;
1036 else return (unsigned int)(2.4 * std::pow((double)n, 1.0/3.0) * std::pow(log(double(n)), 2.0/3.0) - 5);
1037}
1038
1039// ********************************************************
1040
1041void PrimeAndGenerator::Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits)
1042{
1043 // no prime exists for delta = -1, qbits = 4, and pbits = 5
1044 CRYPTOPP_ASSERT(qbits > 4);
1045 CRYPTOPP_ASSERT(pbits > qbits);
1046
1047 if (qbits+1 == pbits)
1048 {
1049 Integer minP = Integer::Power2(pbits-1);
1050 Integer maxP = Integer::Power2(pbits) - 1;
1051 bool success = false;
1052
1053 while (!success)
1054 {
1055 p.Randomize(rng, minP, maxP, Integer::ANY, 6+5*delta, 12);
1056 PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*12, maxP), 12, delta);
1057
1058 while (sieve.NextCandidate(p))
1059 {
1061 q = (p-delta) >> 1;
1063 if (FastProbablePrimeTest(q) && FastProbablePrimeTest(p) && IsPrime(q) && IsPrime(p))
1064 {
1065 success = true;
1066 break;
1067 }
1068 }
1069 }
1070
1071 if (delta == 1)
1072 {
1073 // find g such that g is a quadratic residue mod p, then g has order q
1074 // g=4 always works, but this way we get the smallest quadratic residue (other than 1)
1075 for (g=2; Jacobi(g, p) != 1; ++g) {}
1076 // contributed by Walt Tuvell: g should be the following according to the Law of Quadratic Reciprocity
1077 CRYPTOPP_ASSERT((p%8==1 || p%8==7) ? g==2 : (p%12==1 || p%12==11) ? g==3 : g==4);
1078 }
1079 else
1080 {
1081 CRYPTOPP_ASSERT(delta == -1);
1082 // find g such that g*g-4 is a quadratic non-residue,
1083 // and such that g has order q
1084 for (g=3; ; ++g)
1085 if (Jacobi(g*g-4, p)==-1 && Lucas(q, g, p)==2)
1086 break;
1087 }
1088 }
1089 else
1090 {
1091 Integer minQ = Integer::Power2(qbits-1);
1092 Integer maxQ = Integer::Power2(qbits) - 1;
1093 Integer minP = Integer::Power2(pbits-1);
1094 Integer maxP = Integer::Power2(pbits) - 1;
1095
1096 do
1097 {
1098 q.Randomize(rng, minQ, maxQ, Integer::PRIME);
1099 } while (!p.Randomize(rng, minP, maxP, Integer::PRIME, delta%q, q));
1100
1101 // find a random g of order q
1102 if (delta==1)
1103 {
1104 do
1105 {
1106 Integer h(rng, 2, p-2, Integer::ANY);
1107 g = a_exp_b_mod_c(h, (p-1)/q, p);
1108 } while (g <= 1);
1109 CRYPTOPP_ASSERT(a_exp_b_mod_c(g, q, p)==1);
1110 }
1111 else
1112 {
1113 CRYPTOPP_ASSERT(delta==-1);
1114 do
1115 {
1116 Integer h(rng, 3, p-1, Integer::ANY);
1117 if (Jacobi(h*h-4, p)==1)
1118 continue;
1119 g = Lucas((p+1)/q, h, p);
1120 } while (g <= 2);
1121 CRYPTOPP_ASSERT(Lucas(q, g, p) == 2);
1122 }
1123 }
1124}
1125
1126NAMESPACE_END
1127
1128#endif
Classes for working with NameValuePairs.
AlgorithmParameters MakeParameters(const char *name, const T &value, bool throwIfNotUsed=true)
Create an object that implements NameValuePairs.
Definition algparam.h:508
An object that implements NameValuePairs.
Definition algparam.h:426
Multiple precision integer with arithmetic operations.
Definition integer.h:50
bool GetBit(size_t i) const
Provides the i-th bit of the Integer.
bool IsPositive() const
Determines if the Integer is positive.
Definition integer.h:347
signed long ConvertToLong() const
Convert the Integer to Long.
bool IsSquare() const
Determine whether this integer is a perfect square.
static const Integer & Zero()
Integer representing 0.
void Randomize(RandomNumberGenerator &rng, size_t bitCount)
Set this Integer to random integer.
static Integer Power2(size_t e)
Exponentiates to a power of 2.
Integer Squared() const
Multiply this integer by itself.
Definition integer.h:634
unsigned int BitCount() const
Determines the number of bits required to represent the Integer.
unsigned int WordCount() const
Determines the number of words required to represent the Integer.
@ ANY
a number with no special properties
Definition integer.h:93
@ PRIME
a number which is probabilistically prime
Definition integer.h:95
static const Integer & Two()
Integer representing 2.
bool IsNegative() const
Determines if the Integer is negative.
Definition integer.h:341
bool IsOdd() const
Determines if the Integer is odd parity.
Definition integer.h:356
Integer InverseMod(const Integer &n) const
Calculate multiplicative inverse.
static const Integer & One()
Integer representing 1.
bool IsEven() const
Determines if the Integer is even parity.
Definition integer.h:353
An invalid argument was detected.
Definition cryptlib.h:208
Performs modular arithmetic in Montgomery representation for increased speed.
Definition modarith.h:296
void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits)
Generate a Prime and Generator.
Application callback to signal suitability of a candidate prime.
Definition nbtheory.h:117
Interface for random number generators.
Definition cryptlib.h:1440
virtual word32 GenerateWord32(word32 min=0, word32 max=0xffffffffUL)
Generate a random 32 bit word in the range min to max, inclusive.
Restricts the instantiation of a class to one static object without locks.
Definition misc.h:309
word64 word
Full word used for multiprecision integer arithmetic.
Definition config_int.h:192
unsigned int word32
32-bit unsigned datatype
Definition config_int.h:72
unsigned short word16
16-bit unsigned datatype
Definition config_int.h:69
Multiple precision integer with arithmetic operations.
Utility functions for the Crypto++ library.
const T & STDMIN(const T &a, const T &b)
Replacement function for std::min.
Definition misc.h:657
bool SafeConvert(T1 from, T2 &to)
Perform a conversion from from to to.
Definition misc.h:718
Class file for performing modular arithmetic.
Crypto++ library namespace.
Classes and functions for number theoretic operations.
CRYPTOPP_DLL int Jacobi(const Integer &a, const Integer &b)
Calculate the Jacobi symbol.
CRYPTOPP_DLL bool IsPrime(const Integer &p)
Verifies a number is probably prime.
CRYPTOPP_DLL const word16 * GetPrimeTable(unsigned int &size)
The Small Prime table.
CRYPTOPP_DLL Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
Generates a provable prime.
CRYPTOPP_DLL bool IsStrongLucasProbablePrime(const Integer &n)
Determine if a number is probably prime.
CRYPTOPP_DLL unsigned int DiscreteLogWorkFactor(unsigned int bitlength)
Estimate work factor.
Integer ModularExponentiation(const Integer &x, const Integer &e, const Integer &m)
Modular exponentiation.
Definition nbtheory.h:219
CRYPTOPP_DLL Integer ModularSquareRoot(const Integer &a, const Integer &p)
Extract a modular square root.
CRYPTOPP_DLL bool IsSmallPrime(const Integer &p)
Tests whether a number is a small prime.
CRYPTOPP_DLL bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p)
Solve a Modular Quadratic Equation.
CRYPTOPP_DLL bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
Determine if a number is probably prime.
CRYPTOPP_DLL Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
Generates a provable prime.
CRYPTOPP_DLL Integer Lucas(const Integer &e, const Integer &p, const Integer &n)
Calculate the Lucas value.
CRYPTOPP_DLL Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
Calculate the inverse Lucas value.
CRYPTOPP_DLL bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level=1)
Verifies a number is probably prime.
CRYPTOPP_DLL Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u)
Extract a modular root.
Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
Calculate multiplicative inverse.
Definition nbtheory.h:169
CRYPTOPP_DLL bool SmallDivisorsTest(const Integer &p)
Tests whether a number is divisible by a small prime.
CRYPTOPP_DLL bool IsLucasProbablePrime(const Integer &n)
Determine if a number is probably prime.
Integer GCD(const Integer &a, const Integer &b)
Calculate the greatest common divisor.
Definition nbtheory.h:146
CRYPTOPP_DLL bool TrialDivision(const Integer &p, unsigned bound)
Tests whether a number is divisible by a small prime.
CRYPTOPP_DLL unsigned int FactoringWorkFactor(unsigned int bitlength)
Estimate work factor.
CRYPTOPP_DLL bool IsFermatProbablePrime(const Integer &n, const Integer &b)
Determine if a number is probably prime.
CRYPTOPP_DLL Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
Chinese Remainder Theorem.
CRYPTOPP_DLL bool IsStrongProbablePrime(const Integer &n, const Integer &b)
Determine if a number is probably prime.
CRYPTOPP_DLL bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
Finds a random prime of special form.
Precompiled header file.
Classes for automatic resource management.
Common C++ header files.
Debugging and diagnostic assertions.
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition trap.h:68