Crypto++  8.9
Free C++ class library of cryptographic schemes
gf2n.cpp
1 // gf2n.cpp - originally written and placed in the public domain by Wei Dai
2 
3 #include "pch.h"
4 #include "config.h"
5 
6 #ifndef CRYPTOPP_IMPORTS
7 
8 #include "cryptlib.h"
9 #include "algebra.h"
10 #include "randpool.h"
11 #include "filters.h"
12 #include "smartptr.h"
13 #include "words.h"
14 #include "misc.h"
15 #include "gf2n.h"
16 #include "oids.h"
17 #include "asn.h"
18 #include "cpu.h"
19 
20 #include <iostream>
21 
22 ANONYMOUS_NAMESPACE_BEGIN
23 
24 using CryptoPP::PolynomialMod2;
25 
26 #if defined(HAVE_GCC_INIT_PRIORITY)
27  const PolynomialMod2 g_zero __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 60))) = PolynomialMod2();
28  const PolynomialMod2 g_one __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 61))) = PolynomialMod2(1);
29 #elif defined(HAVE_MSC_INIT_PRIORITY)
30  #pragma warning(disable: 4075)
31  #pragma init_seg(".CRT$XCU")
32  const PolynomialMod2 g_zero;
33  const PolynomialMod2 g_one(1);
34  #pragma warning(default: 4075)
35 #elif defined(HAVE_XLC_INIT_PRIORITY)
36  #pragma priority(290)
37  const PolynomialMod2 g_zero;
38  const PolynomialMod2 g_one(1);
39 #endif
40 
41 ANONYMOUS_NAMESPACE_END
42 
43 NAMESPACE_BEGIN(CryptoPP)
44 
45 #if (CRYPTOPP_CLMUL_AVAILABLE)
46 extern CRYPTOPP_DLL void GF2NT_233_Multiply_Reduce_CLMUL(const word* pA, const word* pB, word* pC);
47 extern CRYPTOPP_DLL void GF2NT_233_Square_Reduce_CLMUL(const word* pA, word* pC);
48 #endif
49 
50 #if (CRYPTOPP_ARM_PMULL_AVAILABLE)
51 extern void GF2NT_233_Multiply_Reduce_ARMv8(const word* pA, const word* pB, word* pC);
52 extern void GF2NT_233_Square_Reduce_ARMv8(const word* pA, word* pC);
53 #endif
54 
55 #if (CRYPTOPP_POWER8_VMULL_AVAILABLE) && 0
56 extern void GF2NT_233_Multiply_Reduce_POWER8(const word* pA, const word* pB, word* pC);
57 extern void GF2NT_233_Square_Reduce_POWER8(const word* pA, word* pC);
58 #endif
59 
61 {
62 }
63 
64 PolynomialMod2::PolynomialMod2(word value, size_t bitLength)
65  : reg(BitsToWords(bitLength))
66 {
67  CRYPTOPP_ASSERT(value==0 || reg.size()>0);
68 
69  if (reg.size() > 0)
70  {
71  reg[0] = value;
72  SetWords(reg+1, 0, reg.size()-1);
73  }
74 }
75 
77  : reg(t.reg.size())
78 {
79  CopyWords(reg, t.reg, reg.size());
80 }
81 
82 void PolynomialMod2::Randomize(RandomNumberGenerator &rng, size_t nbits)
83 {
84  const size_t nbytes = nbits/8 + 1;
85  SecByteBlock buf(nbytes);
86  rng.GenerateBlock(buf, nbytes);
87  buf[0] = (byte)Crop(buf[0], nbits % 8);
88  Decode(buf, nbytes);
89 }
90 
92 {
93  PolynomialMod2 result((word)0, bitLength);
94  SetWords(result.reg, ~(word(0)), result.reg.size());
95  if (bitLength%WORD_BITS)
96  result.reg[result.reg.size()-1] = (word)Crop(result.reg[result.reg.size()-1], bitLength%WORD_BITS);
97  return result;
98 }
99 
100 void PolynomialMod2::SetBit(size_t n, int value)
101 {
102  if (value)
103  {
104  reg.CleanGrow(n/WORD_BITS + 1);
105  reg[n/WORD_BITS] |= (word(1) << (n%WORD_BITS));
106  }
107  else
108  {
109  if (n/WORD_BITS < reg.size())
110  reg[n/WORD_BITS] &= ~(word(1) << (n%WORD_BITS));
111  }
112 }
113 
114 byte PolynomialMod2::GetByte(size_t n) const
115 {
116  if (n/WORD_SIZE >= reg.size())
117  return 0;
118  else
119  return byte(reg[n/WORD_SIZE] >> ((n%WORD_SIZE)*8));
120 }
121 
122 void PolynomialMod2::SetByte(size_t n, byte value)
123 {
124  reg.CleanGrow(BytesToWords(n+1));
125  reg[n/WORD_SIZE] &= ~(word(0xff) << 8*(n%WORD_SIZE));
126  reg[n/WORD_SIZE] |= (word(value) << 8*(n%WORD_SIZE));
127 }
128 
130 {
131  PolynomialMod2 r((word)0, i+1);
132  r.SetBit(i);
133  return r;
134 }
135 
136 PolynomialMod2 PolynomialMod2::Trinomial(size_t t0, size_t t1, size_t t2)
137 {
138  // Asserts and checks due to Bing Shi
139  CRYPTOPP_ASSERT(t0 > t1);
140  CRYPTOPP_ASSERT(t1 > t2);
141 
142  // The test is relaxed because of ECIES<EC2N>. The high order exponent is t0, but the other exponents are not in descending order.
143  if (t1 > t0 || t2 > t0)
144  throw InvalidArgument("PolynomialMod2: exponents must be in descending order");
145 
146  PolynomialMod2 r((word)0, t0+1);
147  r.SetBit(t0);
148  r.SetBit(t1);
149  r.SetBit(t2);
150  return r;
151 }
152 
153 PolynomialMod2 PolynomialMod2::Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4)
154 {
155  // Asserts and checks due to Bing Shi
156  CRYPTOPP_ASSERT(t0 > t1);
157  CRYPTOPP_ASSERT(t1 > t2);
158  CRYPTOPP_ASSERT(t2 > t3);
159  CRYPTOPP_ASSERT(t3 > t4);
160 
161  // The test is relaxed because of ECIES<EC2N>. The high order exponent is t0, but the other exponents are not in descending order.
162  if (t1 > t0 || t2 > t0 || t3 > t0 || t4 > t0)
163  throw InvalidArgument("PolynomialMod2: exponents must be in descending order");
164 
165  PolynomialMod2 r((word)0, t0+1);
166  r.SetBit(t0);
167  r.SetBit(t1);
168  r.SetBit(t2);
169  r.SetBit(t3);
170  r.SetBit(t4);
171  return r;
172 }
173 
174 template <word i>
175 struct NewPolynomialMod2
176 {
177  PolynomialMod2 * operator()() const
178  {
179  return new PolynomialMod2(i);
180  }
181 };
182 
184 {
185 #if defined(HAVE_GCC_INIT_PRIORITY) || defined(HAVE_MSC_INIT_PRIORITY) || defined(HAVE_XLC_INIT_PRIORITY)
186  return g_zero;
187 #elif defined(CRYPTOPP_CXX11_STATIC_INIT)
188  static const PolynomialMod2 g_zero;
189  return g_zero;
190 #else
191  return Singleton<PolynomialMod2>().Ref();
192 #endif
193 }
194 
196 {
197 #if defined(HAVE_GCC_INIT_PRIORITY) || defined(HAVE_MSC_INIT_PRIORITY) || defined(HAVE_XLC_INIT_PRIORITY)
198  return g_one;
199 #elif defined(CRYPTOPP_CXX11_STATIC_INIT)
200  static const PolynomialMod2 g_one(1);
201  return g_one;
202 #else
204 #endif
205 }
206 
207 void PolynomialMod2::Decode(const byte *input, size_t inputLen)
208 {
209  StringStore store(input, inputLen);
210  Decode(store, inputLen);
211 }
212 
213 void PolynomialMod2::Encode(byte *output, size_t outputLen) const
214 {
215  ArraySink sink(output, outputLen);
216  Encode(sink, outputLen);
217 }
218 
219 void PolynomialMod2::Decode(BufferedTransformation &bt, size_t inputLen)
220 {
221  CRYPTOPP_ASSERT(bt.MaxRetrievable() >= inputLen);
222  if (bt.MaxRetrievable() < inputLen)
223  throw InvalidArgument("PolynomialMod2: input length is too small");
224 
225  reg.CleanNew(BytesToWords(inputLen));
226 
227  for (size_t i=inputLen; i > 0; i--)
228  {
229  byte b;
230  (void)bt.Get(b);
231  reg[(i-1)/WORD_SIZE] |= word(b) << ((i-1)%WORD_SIZE)*8;
232  }
233 }
234 
235 void PolynomialMod2::Encode(BufferedTransformation &bt, size_t outputLen) const
236 {
237  for (size_t i=outputLen; i > 0; i--)
238  bt.Put(GetByte(i-1));
239 }
240 
242 {
244  Encode(enc, length);
245  enc.MessageEnd();
246 }
247 
249 {
251  if (!dec.IsDefiniteLength() || dec.RemainingLength() != length)
252  BERDecodeError();
253  Decode(dec, length);
254  dec.MessageEnd();
255 }
256 
257 unsigned int PolynomialMod2::WordCount() const
258 {
259  return (unsigned int)CountWords(reg, reg.size());
260 }
261 
262 unsigned int PolynomialMod2::ByteCount() const
263 {
264  unsigned wordCount = WordCount();
265  if (wordCount)
266  return (wordCount-1)*WORD_SIZE + BytePrecision(reg[wordCount-1]);
267  else
268  return 0;
269 }
270 
271 unsigned int PolynomialMod2::BitCount() const
272 {
273  unsigned wordCount = WordCount();
274  if (wordCount)
275  return (wordCount-1)*WORD_BITS + BitPrecision(reg[wordCount-1]);
276  else
277  return 0;
278 }
279 
280 unsigned int PolynomialMod2::Parity() const
281 {
282  unsigned i;
283  word temp=0;
284  for (i=0; i<reg.size(); i++)
285  temp ^= reg[i];
286  return CryptoPP::Parity(temp);
287 }
288 
289 PolynomialMod2& PolynomialMod2::operator=(const PolynomialMod2& t)
290 {
291  reg.Assign(t.reg);
292  return *this;
293 }
294 
295 PolynomialMod2& PolynomialMod2::operator^=(const PolynomialMod2& t)
296 {
297  reg.CleanGrow(t.reg.size());
298  XorWords(reg, t.reg, t.reg.size());
299  return *this;
300 }
301 
302 PolynomialMod2 PolynomialMod2::Xor(const PolynomialMod2 &b) const
303 {
304  if (b.reg.size() >= reg.size())
305  {
306  PolynomialMod2 result((word)0, b.reg.size()*WORD_BITS);
307  XorWords(result.reg, reg, b.reg, reg.size());
308  CopyWords(result.reg+reg.size(), b.reg+reg.size(), b.reg.size()-reg.size());
309  return result;
310  }
311  else
312  {
313  PolynomialMod2 result((word)0, reg.size()*WORD_BITS);
314  XorWords(result.reg, reg, b.reg, b.reg.size());
315  CopyWords(result.reg+b.reg.size(), reg+b.reg.size(), reg.size()-b.reg.size());
316  return result;
317  }
318 }
319 
320 PolynomialMod2 PolynomialMod2::And(const PolynomialMod2 &b) const
321 {
322  PolynomialMod2 result((word)0, WORD_BITS*STDMIN(reg.size(), b.reg.size()));
323  AndWords(result.reg, reg, b.reg, result.reg.size());
324  return result;
325 }
326 
327 PolynomialMod2 PolynomialMod2::Times(const PolynomialMod2 &b) const
328 {
329  PolynomialMod2 result((word)0, BitCount() + b.BitCount());
330 
331  for (int i=b.Degree(); i>=0; i--)
332  {
333  result <<= 1;
334  if (b[i])
335  XorWords(result.reg, reg, reg.size());
336  }
337  return result;
338 }
339 
340 PolynomialMod2 PolynomialMod2::Squared() const
341 {
342  static const word map[16] = {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85};
343 
344  PolynomialMod2 result((word)0, 2*reg.size()*WORD_BITS);
345 
346  for (unsigned i=0; i<reg.size(); i++)
347  {
348  unsigned j;
349 
350  for (j=0; j<WORD_BITS; j+=8)
351  result.reg[2*i] |= map[(reg[i] >> (j/2)) % 16] << j;
352 
353  for (j=0; j<WORD_BITS; j+=8)
354  result.reg[2*i+1] |= map[(reg[i] >> (j/2 + WORD_BITS/2)) % 16] << j;
355  }
356 
357  return result;
358 }
359 
360 void PolynomialMod2::Divide(PolynomialMod2 &remainder, PolynomialMod2 &quotient,
361  const PolynomialMod2 &dividend, const PolynomialMod2 &divisor)
362 {
363  if (!divisor)
365 
366  int degree = divisor.Degree();
367  remainder.reg.CleanNew(BitsToWords(degree+1));
368  if (dividend.BitCount() >= divisor.BitCount())
369  quotient.reg.CleanNew(BitsToWords(dividend.BitCount() - divisor.BitCount() + 1));
370  else
371  quotient.reg.CleanNew(0);
372 
373  for (int i=dividend.Degree(); i>=0; i--)
374  {
375  remainder <<= 1;
376  remainder.reg[0] |= dividend[i];
377  if (remainder[degree])
378  {
379  remainder -= divisor;
380  quotient.SetBit(i);
381  }
382  }
383 }
384 
385 PolynomialMod2 PolynomialMod2::DividedBy(const PolynomialMod2 &b) const
386 {
387  PolynomialMod2 remainder, quotient;
388  PolynomialMod2::Divide(remainder, quotient, *this, b);
389  return quotient;
390 }
391 
392 PolynomialMod2 PolynomialMod2::Modulo(const PolynomialMod2 &b) const
393 {
394  PolynomialMod2 remainder, quotient;
395  PolynomialMod2::Divide(remainder, quotient, *this, b);
396  return remainder;
397 }
398 
399 PolynomialMod2& PolynomialMod2::operator<<=(unsigned int n)
400 {
401 #if defined(CRYPTOPP_DEBUG)
402  int x=0; CRYPTOPP_UNUSED(x);
404 #endif
405 
406  if (!reg.size())
407  return *this;
408 
409  int i;
410  word u;
411  word carry=0;
412  word *r=reg;
413 
414  if (n==1) // special case code for most frequent case
415  {
416  i = (int)reg.size();
417  while (i--)
418  {
419  u = *r;
420  *r = (u << 1) | carry;
421  carry = u >> (WORD_BITS-1);
422  r++;
423  }
424 
425  if (carry)
426  {
427  reg.Grow(reg.size()+1);
428  reg[reg.size()-1] = carry;
429  }
430 
431  return *this;
432  }
433 
434  const int shiftWords = n / WORD_BITS;
435  const int shiftBits = n % WORD_BITS;
436 
437  if (shiftBits)
438  {
439  i = (int)reg.size();
440  while (i--)
441  {
442  u = *r;
443  *r = (u << shiftBits) | carry;
444  carry = u >> (WORD_BITS-shiftBits);
445  r++;
446  }
447  }
448 
449  if (carry)
450  {
451  // Thanks to Apatryda, http://github.com/weidai11/cryptopp/issues/64
452  const size_t carryIndex = reg.size();
453  reg.Grow(reg.size()+shiftWords+!!shiftBits);
454  reg[carryIndex] = carry;
455  }
456  else
457  reg.Grow(reg.size()+shiftWords);
458 
459  if (shiftWords)
460  {
461  for (i = (int)reg.size()-1; i>=shiftWords; i--)
462  reg[i] = reg[i-shiftWords];
463  for (; i>=0; i--)
464  reg[i] = 0;
465  }
466 
467  return *this;
468 }
469 
470 PolynomialMod2& PolynomialMod2::operator>>=(unsigned int n)
471 {
472  if (!reg.size())
473  return *this;
474 
475  int shiftWords = n / WORD_BITS;
476  int shiftBits = n % WORD_BITS;
477 
478  size_t i;
479  word u;
480  word carry=0;
481  word *r=reg+reg.size()-1;
482 
483  if (shiftBits)
484  {
485  i = reg.size();
486  while (i--)
487  {
488  u = *r;
489  *r = (u >> shiftBits) | carry;
490  carry = u << (WORD_BITS-shiftBits);
491  r--;
492  }
493  }
494 
495  if (shiftWords)
496  {
497  for (i=0; i<reg.size()-shiftWords; i++)
498  reg[i] = reg[i+shiftWords];
499  for (; i<reg.size(); i++)
500  reg[i] = 0;
501  }
502 
503  return *this;
504 }
505 
506 PolynomialMod2 PolynomialMod2::operator<<(unsigned int n) const
507 {
508  PolynomialMod2 result(*this);
509  return result<<=n;
510 }
511 
512 PolynomialMod2 PolynomialMod2::operator>>(unsigned int n) const
513 {
514  PolynomialMod2 result(*this);
515  return result>>=n;
516 }
517 
518 bool PolynomialMod2::operator!() const
519 {
520  for (unsigned i=0; i<reg.size(); i++)
521  if (reg[i]) return false;
522  return true;
523 }
524 
525 bool PolynomialMod2::Equals(const PolynomialMod2 &rhs) const
526 {
527  size_t i, smallerSize = STDMIN(reg.size(), rhs.reg.size());
528 
529  for (i=0; i<smallerSize; i++)
530  if (reg[i] != rhs.reg[i]) return false;
531 
532  for (i=smallerSize; i<reg.size(); i++)
533  if (reg[i] != 0) return false;
534 
535  for (i=smallerSize; i<rhs.reg.size(); i++)
536  if (rhs.reg[i] != 0) return false;
537 
538  return true;
539 }
540 
541 std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a)
542 {
543  // Get relevant conversion specifications from ostream.
544  long f = out.flags() & std::ios::basefield; // Get base digits.
545  int bits, block;
546  char suffix;
547  switch(f)
548  {
549  case std::ios::oct :
550  bits = 3;
551  block = 4;
552  suffix = 'o';
553  break;
554  case std::ios::hex :
555  bits = 4;
556  block = 2;
557  suffix = 'h';
558  break;
559  default :
560  bits = 1;
561  block = 8;
562  suffix = 'b';
563  }
564 
565  if (!a)
566  return out << '0' << suffix;
567 
568  SecBlock<char> s(a.BitCount()/bits+1);
569  unsigned i;
570 
571  static const char upper[]="0123456789ABCDEF";
572  static const char lower[]="0123456789abcdef";
573  const char* const vec = (out.flags() & std::ios::uppercase) ? upper : lower;
574 
575  for (i=0; i*bits < a.BitCount(); i++)
576  {
577  int digit=0;
578  for (int j=0; j<bits; j++)
579  digit |= a[i*bits+j] << j;
580  s[i]=vec[digit];
581  }
582 
583  while (i--)
584  {
585  out << s[i];
586  if (i && (i%block)==0)
587  out << ',';
588  }
589 
590  return out << suffix;
591 }
592 
594 {
595  return EuclideanDomainOf<PolynomialMod2>().Gcd(a, b);
596 }
597 
599 {
600  typedef EuclideanDomainOf<PolynomialMod2> Domain;
601  return QuotientRing<Domain>(Domain(), modulus).MultiplicativeInverse(*this);
602 }
603 
605 {
606  signed int d = Degree();
607  if (d <= 0)
608  return false;
609 
610  PolynomialMod2 t(2), u(t);
611  for (int i=1; i<=d/2; i++)
612  {
613  u = u.Squared()%(*this);
614  if (!Gcd(u+t, *this).IsUnit())
615  return false;
616  }
617  return true;
618 }
619 
620 // ********************************************************
621 
622 GF2NP::GF2NP(const PolynomialMod2 &modulus)
623  : QuotientRing<EuclideanDomainOf<PolynomialMod2> >(EuclideanDomainOf<PolynomialMod2>(), modulus), m(modulus.Degree())
624 {
625 }
626 
627 GF2NP::Element GF2NP::SquareRoot(const Element &a) const
628 {
629  Element r = a;
630  for (unsigned int i=1; i<m; i++)
631  r = Square(r);
632  return r;
633 }
634 
635 GF2NP::Element GF2NP::HalfTrace(const Element &a) const
636 {
637  CRYPTOPP_ASSERT(m%2 == 1);
638  Element h = a;
639  for (unsigned int i=1; i<=(m-1)/2; i++)
640  h = Add(Square(Square(h)), a);
641  return h;
642 }
643 
644 GF2NP::Element GF2NP::SolveQuadraticEquation(const Element &a) const
645 {
646  if (m%2 == 0)
647  {
648  Element z, w;
649  RandomPool rng;
650  do
651  {
652  Element p((RandomNumberGenerator &)rng, m);
653  z = PolynomialMod2::Zero();
654  w = p;
655  for (unsigned int i=1; i<=m-1; i++)
656  {
657  w = Square(w);
658  z = Square(z);
659  Accumulate(z, Multiply(w, a));
660  Accumulate(w, p);
661  }
662  } while (w.IsZero());
663  return z;
664  }
665  else
666  return HalfTrace(a);
667 }
668 
669 // ********************************************************
670 
671 GF2NT::GF2NT(unsigned int c0, unsigned int c1, unsigned int c2)
672  : GF2NP(PolynomialMod2::Trinomial(c0, c1, c2))
673  , t0(c0), t1(c1)
674  , result((word)0, m)
675 {
676  // Asserts and checks due to Bing Shi
677  CRYPTOPP_ASSERT(c0 > c1 && c1 > c2 && c2==0);
678 
679  // The test is relaxed because of ECIES<EC2N>. The high order exponent is t0, but the other exponents are not in descending order.
680  if (c1 > c0 || c2 > c0)
681  throw InvalidArgument("GF2NT: exponents must be in descending order");
682 }
683 
684 const GF2NT::Element& GF2NT::MultiplicativeInverse(const Element &a) const
685 {
686  if (t0-t1 < WORD_BITS)
688 
689  SecWordBlock T(m_modulus.reg.size() * 4);
690  word *b = T;
691  word *c = T+m_modulus.reg.size();
692  word *f = T+2*m_modulus.reg.size();
693  word *g = T+3*m_modulus.reg.size();
694  size_t bcLen=1, fgLen=m_modulus.reg.size();
695  unsigned int k=0;
696 
697  SetWords(T, 0, 3*m_modulus.reg.size());
698  b[0]=1;
699  CRYPTOPP_ASSERT(a.reg.size() <= m_modulus.reg.size());
700  CopyWords(f, a.reg, a.reg.size());
701  CopyWords(g, m_modulus.reg, m_modulus.reg.size());
702 
703  while (1)
704  {
705  word t=f[0];
706  while (!t)
707  {
708  ShiftWordsRightByWords(f, fgLen, 1);
709  if (c[bcLen-1])
710  bcLen++;
711  CRYPTOPP_ASSERT(bcLen <= m_modulus.reg.size());
712  ShiftWordsLeftByWords(c, bcLen, 1);
713  k+=WORD_BITS;
714  t=f[0];
715  }
716 
717  unsigned int i=0;
718  while (t%2 == 0)
719  {
720  t>>=1;
721  i++;
722  }
723  k+=i;
724 
725  if (t==1 && CountWords(f, fgLen)==1)
726  break;
727 
728  if (i==1)
729  {
730  ShiftWordsRightByBits(f, fgLen, 1);
731  t=ShiftWordsLeftByBits(c, bcLen, 1);
732  }
733  else
734  {
735  ShiftWordsRightByBits(f, fgLen, i);
736  t=ShiftWordsLeftByBits(c, bcLen, i);
737  }
738  if (t)
739  {
740  c[bcLen] = t;
741  bcLen++;
742  CRYPTOPP_ASSERT(bcLen <= m_modulus.reg.size());
743  }
744 
745  if (f[fgLen-1]==0 && g[fgLen-1]==0)
746  fgLen--;
747 
748  if (f[fgLen-1] < g[fgLen-1])
749  {
750  std::swap(f, g);
751  std::swap(b, c);
752  }
753 
754  XorWords(f, g, fgLen);
755  XorWords(b, c, bcLen);
756  }
757 
758  while (k >= WORD_BITS)
759  {
760  word temp = b[0];
761  // right shift b
762  for (unsigned i=0; i+1<BitsToWords(m); i++)
763  b[i] = b[i+1];
764  b[BitsToWords(m)-1] = 0;
765 
766  if (t1 < WORD_BITS)
767  for (unsigned int j=0; j<WORD_BITS-t1; j++)
768  {
769  // Coverity finding on shift amount of 'word x << (t1+j)'.
770  // temp ^= ((temp >> j) & 1) << (t1 + j);
771  const unsigned int shift = t1 + j;
772  CRYPTOPP_ASSERT(shift < WORD_BITS);
773  temp ^= (shift < WORD_BITS) ? (((temp >> j) & 1) << shift) : 0;
774  }
775  else
776  b[t1/WORD_BITS-1] ^= temp << t1%WORD_BITS;
777 
778  if (t1 % WORD_BITS)
779  b[t1/WORD_BITS] ^= temp >> (WORD_BITS - t1%WORD_BITS);
780 
781  if (t0%WORD_BITS)
782  {
783  b[t0/WORD_BITS-1] ^= temp << t0%WORD_BITS;
784  b[t0/WORD_BITS] ^= temp >> (WORD_BITS - t0%WORD_BITS);
785  }
786  else
787  b[t0/WORD_BITS-1] ^= temp;
788 
789  k -= WORD_BITS;
790  }
791 
792  if (k)
793  {
794  word temp = b[0] << (WORD_BITS - k);
796 
797  if (t1 < WORD_BITS)
798  {
799  for (unsigned int j=0; j<WORD_BITS-t1; j++)
800  {
801  // Coverity finding on shift amount of 'word x << (t1+j)'.
802  // temp ^= ((temp >> j) & 1) << (t1 + j);
803  const unsigned int shift = t1 + j;
804  CRYPTOPP_ASSERT(shift < WORD_BITS);
805  temp ^= (shift < WORD_BITS) ? (((temp >> j) & 1) << shift) : 0;
806  }
807  }
808  else
809  {
810  b[t1/WORD_BITS-1] ^= temp << t1%WORD_BITS;
811  }
812 
813  if (t1 % WORD_BITS)
814  b[t1/WORD_BITS] ^= temp >> (WORD_BITS - t1%WORD_BITS);
815 
816  if (t0%WORD_BITS)
817  {
818  b[t0/WORD_BITS-1] ^= temp << t0%WORD_BITS;
819  b[t0/WORD_BITS] ^= temp >> (WORD_BITS - t0%WORD_BITS);
820  }
821  else
822  b[t0/WORD_BITS-1] ^= temp;
823  }
824 
825  CopyWords(result.reg.begin(), b, result.reg.size());
826  return result;
827 }
828 
829 const GF2NT::Element& GF2NT::Multiply(const Element &a, const Element &b) const
830 {
831  size_t aSize = STDMIN(a.reg.size(), result.reg.size());
832  Element r((word)0, m);
833 
834  for (int i=m-1; i>=0; i--)
835  {
836  if (r[m-1])
837  {
838  ShiftWordsLeftByBits(r.reg.begin(), r.reg.size(), 1);
839  XorWords(r.reg.begin(), m_modulus.reg, r.reg.size());
840  }
841  else
842  ShiftWordsLeftByBits(r.reg.begin(), r.reg.size(), 1);
843 
844  if (b[i])
845  XorWords(r.reg.begin(), a.reg, aSize);
846  }
847 
848  if (m%WORD_BITS)
849  r.reg.begin()[r.reg.size()-1] = (word)Crop(r.reg[r.reg.size()-1], m%WORD_BITS);
850 
851  CopyWords(result.reg.begin(), r.reg.begin(), result.reg.size());
852  return result;
853 }
854 
855 const GF2NT::Element& GF2NT::Reduced(const Element &a) const
856 {
857  if (t0-t1 < WORD_BITS)
858  return m_domain.Mod(a, m_modulus);
859 
860  SecWordBlock b(a.reg);
861 
862  size_t i;
863  for (i=b.size()-1; i>=BitsToWords(t0); i--)
864  {
865  word temp = b[i];
866 
867  if (t0%WORD_BITS)
868  {
869  b[i-t0/WORD_BITS] ^= temp >> t0%WORD_BITS;
870  b[i-t0/WORD_BITS-1] ^= temp << (WORD_BITS - t0%WORD_BITS);
871  }
872  else
873  b[i-t0/WORD_BITS] ^= temp;
874 
875  if ((t0-t1)%WORD_BITS)
876  {
877  b[i-(t0-t1)/WORD_BITS] ^= temp >> (t0-t1)%WORD_BITS;
878  b[i-(t0-t1)/WORD_BITS-1] ^= temp << (WORD_BITS - (t0-t1)%WORD_BITS);
879  }
880  else
881  b[i-(t0-t1)/WORD_BITS] ^= temp;
882  }
883 
884  if (i==BitsToWords(t0)-1 && t0%WORD_BITS)
885  {
886  word mask = ((word)1<<(t0%WORD_BITS))-1;
887  word temp = b[i] & ~mask;
888  b[i] &= mask;
889 
890  b[i-t0/WORD_BITS] ^= temp >> t0%WORD_BITS;
891 
892  if ((t0-t1)%WORD_BITS)
893  {
894  b[i-(t0-t1)/WORD_BITS] ^= temp >> (t0-t1)%WORD_BITS;
895  if ((t0-t1)%WORD_BITS > t0%WORD_BITS)
896  b[i-(t0-t1)/WORD_BITS-1] ^= temp << (WORD_BITS - (t0-t1)%WORD_BITS);
897  else
898  CRYPTOPP_ASSERT(temp << (WORD_BITS - (t0-t1)%WORD_BITS) == 0);
899  }
900  else
901  b[i-(t0-t1)/WORD_BITS] ^= temp;
902  }
903 
904  SetWords(result.reg.begin(), 0, result.reg.size());
905  CopyWords(result.reg.begin(), b, STDMIN(b.size(), result.reg.size()));
906  return result;
907 }
908 
909 void GF2NP::DEREncodeElement(BufferedTransformation &out, const Element &a) const
910 {
911  a.DEREncodeAsOctetString(out, MaxElementByteLength());
912 }
913 
914 void GF2NP::BERDecodeElement(BufferedTransformation &in, Element &a) const
915 {
916  a.BERDecodeAsOctetString(in, MaxElementByteLength());
917 }
918 
919 void GF2NT::DEREncode(BufferedTransformation &bt) const
920 {
921  DERSequenceEncoder seq(bt);
922  ASN1::characteristic_two_field().DEREncode(seq);
923  DERSequenceEncoder parameters(seq);
924  DEREncodeUnsigned(parameters, m);
925  ASN1::tpBasis().DEREncode(parameters);
926  DEREncodeUnsigned(parameters, t1);
927  parameters.MessageEnd();
928  seq.MessageEnd();
929 }
930 
931 void GF2NPP::DEREncode(BufferedTransformation &bt) const
932 {
933  DERSequenceEncoder seq(bt);
934  ASN1::characteristic_two_field().DEREncode(seq);
935  DERSequenceEncoder parameters(seq);
936  DEREncodeUnsigned(parameters, m);
937  ASN1::ppBasis().DEREncode(parameters);
938  DERSequenceEncoder pentanomial(parameters);
939  DEREncodeUnsigned(pentanomial, t3);
940  DEREncodeUnsigned(pentanomial, t2);
941  DEREncodeUnsigned(pentanomial, t1);
942  pentanomial.MessageEnd();
943  parameters.MessageEnd();
944  seq.MessageEnd();
945 }
946 
947 GF2NP * BERDecodeGF2NP(BufferedTransformation &bt)
948 {
949  member_ptr<GF2NP> result;
950 
951  BERSequenceDecoder seq(bt);
952  if (OID(seq) != ASN1::characteristic_two_field())
953  BERDecodeError();
954  BERSequenceDecoder parameters(seq);
955  unsigned int m;
956  BERDecodeUnsigned(parameters, m);
957  OID oid(parameters);
958  if (oid == ASN1::tpBasis())
959  {
960  unsigned int t1;
961  BERDecodeUnsigned(parameters, t1);
962  result.reset(new GF2NT(m, t1, 0));
963  }
964  else if (oid == ASN1::ppBasis())
965  {
966  unsigned int t1, t2, t3;
967  BERSequenceDecoder pentanomial(parameters);
968  BERDecodeUnsigned(pentanomial, t3);
969  BERDecodeUnsigned(pentanomial, t2);
970  BERDecodeUnsigned(pentanomial, t1);
971  pentanomial.MessageEnd();
972  result.reset(new GF2NPP(m, t3, t2, t1, 0));
973  }
974  else
975  {
976  BERDecodeError();
977  return NULLPTR;
978  }
979  parameters.MessageEnd();
980  seq.MessageEnd();
981 
982  return result.release();
983 }
984 
985 // ********************************************************
986 
987 GF2NT233::GF2NT233(unsigned int c0, unsigned int c1, unsigned int c2)
988  : GF2NT(c0, c1, c2)
989 {
990  // Asserts and checks due to Bing Shi
991  CRYPTOPP_ASSERT(c0 > c1 && c1 > c2 && c2==0);
992 
993  // The test is relaxed because of ECIES<EC2N>. The high order exponent is t0, but the other exponents are not in descending order.
994  if (c1 > c0 || c2 > c0)
995  throw InvalidArgument("GF2NT233: exponents must be in descending order");
996 }
997 
998 const GF2NT::Element& GF2NT233::Multiply(const Element &a, const Element &b) const
999 {
1000 #if (CRYPTOPP_CLMUL_AVAILABLE)
1001  if (HasCLMUL())
1002  {
1003  CRYPTOPP_ASSERT(a.reg.size()*WORD_BITS == 256);
1004  CRYPTOPP_ASSERT(b.reg.size()*WORD_BITS == 256);
1005  CRYPTOPP_ASSERT(result.reg.size()*WORD_BITS == 256);
1006 
1007  const word* pA = a.reg.begin();
1008  const word* pB = b.reg.begin();
1009  word* pR = result.reg.begin();
1010 
1011  GF2NT_233_Multiply_Reduce_CLMUL(pA, pB, pR);
1012  return result;
1013  }
1014  else
1015 #elif (CRYPTOPP_ARM_PMULL_AVAILABLE)
1016  if (HasPMULL())
1017  {
1018  CRYPTOPP_ASSERT(a.reg.size()*WORD_BITS == 256);
1019  CRYPTOPP_ASSERT(b.reg.size()*WORD_BITS == 256);
1020  CRYPTOPP_ASSERT(result.reg.size()*WORD_BITS == 256);
1021 
1022  const word* pA = a.reg.begin();
1023  const word* pB = b.reg.begin();
1024  word* pR = result.reg.begin();
1025 
1026  GF2NT_233_Multiply_Reduce_ARMv8(pA, pB, pR);
1027  return result;
1028  }
1029  else
1030 #elif (CRYPTOPP_POWER8_VMULL_AVAILABLE) && 0
1031  if (HasPMULL())
1032  {
1033  CRYPTOPP_ASSERT(a.reg.size()*WORD_BITS == 256);
1034  CRYPTOPP_ASSERT(b.reg.size()*WORD_BITS == 256);
1035  CRYPTOPP_ASSERT(result.reg.size()*WORD_BITS == 256);
1036 
1037  const word* pA = a.reg.begin();
1038  const word* pB = b.reg.begin();
1039  word* pR = result.reg.begin();
1040 
1041  GF2NT_233_Multiply_Reduce_POWER8(pA, pB, pR);
1042  return result;
1043  }
1044  else
1045 #endif
1046 
1047  return GF2NT::Multiply(a, b);
1048 }
1049 
1050 const GF2NT::Element& GF2NT233::Square(const Element &a) const
1051 {
1052 #if (CRYPTOPP_CLMUL_AVAILABLE)
1053  if (HasCLMUL())
1054  {
1055  CRYPTOPP_ASSERT(a.reg.size()*WORD_BITS == 256);
1056  CRYPTOPP_ASSERT(result.reg.size()*WORD_BITS == 256);
1057 
1058  const word* pA = a.reg.begin();
1059  word* pR = result.reg.begin();
1060 
1061  GF2NT_233_Square_Reduce_CLMUL(pA, pR);
1062  return result;
1063  }
1064  else
1065 #elif (CRYPTOPP_ARM_PMULL_AVAILABLE)
1066  if (HasPMULL())
1067  {
1068  CRYPTOPP_ASSERT(a.reg.size()*WORD_BITS == 256);
1069  CRYPTOPP_ASSERT(result.reg.size()*WORD_BITS == 256);
1070 
1071  const word* pA = a.reg.begin();
1072  word* pR = result.reg.begin();
1073 
1074  GF2NT_233_Square_Reduce_ARMv8(pA, pR);
1075  return result;
1076  }
1077  else
1078 #elif (CRYPTOPP_POWER8_VMULL_AVAILABLE) && 0
1079  if (HasPMULL())
1080  {
1081  CRYPTOPP_ASSERT(a.reg.size()*WORD_BITS == 256);
1082  CRYPTOPP_ASSERT(result.reg.size()*WORD_BITS == 256);
1083 
1084  const word* pA = a.reg.begin();
1085  word* pR = result.reg.begin();
1086 
1087  GF2NT_233_Square_Reduce_POWER8(pA, pR);
1088  return result;
1089  }
1090  else
1091 #endif
1092 
1093  return GF2NT::Square(a);
1094 }
1095 
1096 NAMESPACE_END
1097 
1098 #endif
Classes for performing mathematics over different fields.
Classes and functions for working with ANS.1 objects.
void BERDecodeUnsigned(BufferedTransformation &in, T &w, byte asnTag=INTEGER, T minValue=0, T maxValue=T(0xffffffff))
BER Decode unsigned value.
Definition: asn.h:857
size_t DEREncodeUnsigned(BufferedTransformation &out, T w, byte asnTag=INTEGER)
DER Encode unsigned value.
Definition: asn.h:821
std::ostream & operator<<(std::ostream &out, const OID &oid)
Print a OID value.
@ OCTET_STRING
ASN.1 Octet string.
Definition: asn.h:38
void BERDecodeError()
Raises a BERDecodeErr.
Definition: asn.h:104
virtual const Element & Gcd(const Element &a, const Element &b) const
Calculates the greatest common denominator in the ring.
Definition: algebra.cpp:56
Copy input to a memory buffer.
Definition: filters.h:1200
BER General Decoder.
Definition: asn.h:381
BER Sequence Decoder.
Definition: asn.h:526
Interface for buffered transformations.
Definition: cryptlib.h:1657
virtual size_t Get(byte &outByte)
Retrieve a 8-bit byte.
size_t Put(byte inByte, bool blocking=true)
Input a byte for processing.
Definition: cryptlib.h:1678
virtual lword MaxRetrievable() const
Provides the number of bytes ready for retrieval.
DER General Encoder.
Definition: asn.h:492
DER Sequence Encoder.
Definition: asn.h:558
Euclidean domain.
Definition: algebra.h:316
GF(2^n) with Polynomial Basis.
Definition: gf2n.h:299
GF(2^n) with Pentanomial Basis.
Definition: gf2n.h:375
const Element & Multiply(const Element &a, const Element &b) const
Multiplies elements in the group.
const Element & Square(const Element &a) const
Square an element in the group.
GF(2^n) with Trinomial Basis.
Definition: gf2n.h:335
const Element & Multiply(const Element &a, const Element &b) const
Multiplies elements in the group.
const Element & MultiplicativeInverse(const Element &a) const
Calculate the multiplicative inverse of an element in the group.
const Element & Square(const Element &a) const
Square an element in the group.
Definition: gf2n.h:345
An invalid argument was detected.
Definition: cryptlib.h:208
Object Identifier.
Definition: asn.h:265
Exception thrown when divide by zero is encountered.
Definition: gf2n.h:33
Polynomial with Coefficients in GF(2)
Definition: gf2n.h:27
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const
encode value as big-endian octet string
void Encode(byte *output, size_t outputLen) const
encode in big-endian format
static PolynomialMod2 Monomial(size_t i)
Provides x^i.
static const PolynomialMod2 & Zero()
The Zero polinomial.
signed int Degree() const
the zero polynomial will return a degree of -1
Definition: gf2n.h:130
bool IsIrreducible() const
check for irreducibility
static PolynomialMod2 Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4)
Provides x^t0 + x^t1 + x^t2 + x^t3 + x^t4.
bool IsUnit() const
only 1 is a unit
Definition: gf2n.h:230
void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length)
decode value as big-endian octet string
byte GetByte(size_t n) const
return the n-th byte
unsigned int BitCount() const
number of significant bits = Degree() + 1
unsigned int WordCount() const
number of significant words = ceiling(ByteCount()/sizeof(word))
static PolynomialMod2 AllOnes(size_t n)
Provides x^(n-1) + ...
static const PolynomialMod2 & One()
The One polinomial.
static PolynomialMod2 Trinomial(size_t t0, size_t t1, size_t t2)
Provides x^t0 + x^t1 + x^t2.
PolynomialMod2 InverseMod(const PolynomialMod2 &) const
calculate multiplicative inverse of *this mod n
unsigned int Parity() const
sum modulo 2 of all coefficients
PolynomialMod2()
Construct the zero polynomial.
unsigned int ByteCount() const
number of significant bytes = ceiling(BitCount()/8)
static void Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d)
calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))
static PolynomialMod2 Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n)
greatest common divisor
void SetByte(size_t n, byte value)
set the n-th byte to value
Quotient ring.
Definition: algebra.h:387
const Element & Square(const Element &a) const
Definition: algebra.h:434
Element & Accumulate(Element &a, const Element &b) const
Definition: algebra.h:410
const Element & MultiplicativeInverse(const Element &a) const
Calculate the multiplicative inverse of an element in the group.
Definition: algebra.cpp:70
const Element & Add(const Element &a, const Element &b) const
Definition: algebra.h:407
const Element & Multiply(const Element &a, const Element &b) const
Definition: algebra.h:431
Interface for random number generators.
Definition: cryptlib.h:1440
virtual void GenerateBlock(byte *output, size_t size)
Generate random array of bytes.
Randomness Pool based on AES-256.
Definition: randpool.h:44
Secure memory block with allocator and cleanup.
Definition: secblock.h:731
iterator begin()
Provides an iterator pointing to the first element in the memory block.
Definition: secblock.h:836
void CleanNew(size_type newSize)
Change size without preserving contents.
Definition: secblock.h:1143
void CleanGrow(size_type newSize)
Change size and preserve contents.
Definition: secblock.h:1179
void Grow(size_type newSize)
Change size and preserve contents.
Definition: secblock.h:1160
void Assign(const T *ptr, size_type len)
Set contents and size from an array.
Definition: secblock.h:898
size_type size() const
Provides the count of elements in the SecBlock.
Definition: secblock.h:867
SecBlock<byte> typedef.
Definition: secblock.h:1226
SecBlock<word> typedef.
Definition: secblock.h:1228
Restricts the instantiation of a class to one static object without locks.
Definition: misc.h:309
const T & Ref(...) const
Return a reference to the inner Singleton object.
Definition: misc.h:329
String-based implementation of Store interface.
Definition: filters.h:1259
Pointer that overloads operator ->
Definition: smartptr.h:38
Library configuration file.
unsigned char byte
8-bit unsigned datatype
Definition: config_int.h:66
word64 word
Full word used for multiprecision integer arithmetic.
Definition: config_int.h:192
const unsigned int WORD_BITS
Size of a platform word in bits.
Definition: config_int.h:260
const unsigned int WORD_SIZE
Size of a platform word in bytes.
Definition: config_int.h:255
Functions for CPU features and intrinsics.
Abstract base classes that provide a uniform interface to this library.
Implementation of BufferedTransformation's attachment interface.
Classes and functions for schemes over GF(2^n)
Utility functions for the Crypto++ library.
unsigned int BitPrecision(const T &value)
Returns the number of bits required for a value.
Definition: misc.h:1047
unsigned int BytePrecision(const T &value)
Returns the number of 8-bit bytes or octets required for a value.
Definition: misc.h:1024
size_t BitsToWords(size_t bitCount)
Returns the number of words required for the specified number of bits.
Definition: misc.h:1163
T Crop(T value, size_t bits)
Truncates the value to the specified number of bits.
Definition: misc.h:1131
unsigned int Parity(T value)
Returns the parity of a value.
Definition: misc.h:1012
size_t BytesToWords(size_t byteCount)
Returns the number of words required for the specified number of bytes.
Definition: misc.h:1153
bool SafeConvert(T1 from, T2 &to)
Perform a conversion from from to to.
Definition: misc.h:718
const T & STDMIN(const T &a, const T &b)
Replacement function for std::min.
Definition: misc.h:657
Crypto++ library namespace.
ASN.1 object identifiers for algorithms and schemes.
Precompiled header file.
Class file for Randomness Pool.
void swap(::SecBlock< T, A > &a, ::SecBlock< T, A > &b)
Swap two SecBlocks.
Definition: secblock.h:1289
Classes for automatic resource management.
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:68
Support functions for word operations.
void ShiftWordsRightByWords(word *r, size_t n, size_t shiftWords)
Right shift word array.
Definition: words.h:212
void XorWords(word *r, const word *a, const word *b, size_t n)
XOR word arrays.
Definition: words.h:66
void SetWords(word *r, word a, size_t n)
Set the value of words.
Definition: words.h:35
word ShiftWordsLeftByBits(word *r, size_t n, unsigned int shiftBits)
Left shift word array.
Definition: words.h:149
void ShiftWordsLeftByWords(word *r, size_t n, size_t shiftWords)
Left shift word array.
Definition: words.h:194
size_t CountWords(const word *x, size_t n)
Count the number of words.
Definition: words.h:21
word ShiftWordsRightByBits(word *r, size_t n, unsigned int shiftBits)
Right shift word array.
Definition: words.h:172
void CopyWords(word *r, const word *a, size_t n)
Copy word array.
Definition: words.h:48
void AndWords(word *r, const word *a, const word *b, size_t n)
AND word arrays.
Definition: words.h:93