Crypto++ 8.9
Free C++ class library of cryptographic schemes
RingOfPolynomialsOver< T > Member List

This is the complete list of members for RingOfPolynomialsOver< T >, including all inherited members.

AbstractRing()AbstractRing< T >inline
AbstractRing(const AbstractRing &source)AbstractRing< T >inline
Accumulate(Element &a, const Element &b) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::Accumulate(Element &a, const Element &b) constAbstractGroup< T >virtual
Add(const Element &a, const Element &b) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::Add(const Element &a, const Element &b) const =0AbstractGroup< T >pure virtual
CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) constAbstractRing< T >virtual
CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) constAbstractGroup< T >virtual
CoefficientRing typedef (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >
CoefficientType typedef (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >
Divide(const Element &a, const Element &b) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::Divide(const Element &a, const Element &b) constAbstractRing< T >virtual
DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const=0AbstractEuclideanDomain< PolynomialOver< T > >pure virtual
Double(const Element &a) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::Double(const Element &a) constAbstractGroup< T >virtual
Element typedef (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >
Equal(const Element &a, const Element &b) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::Equal(const Element &a, const Element &b) const =0AbstractGroup< T >pure virtual
Exponentiate(const Element &a, const Integer &e) constAbstractRing< T >virtual
Gcd(const Element &a, const Element &b) constAbstractEuclideanDomain< PolynomialOver< T > >virtual
Identity() constRingOfPolynomialsOver< T >inlinevirtual
Interpolate(const CoefficientType x[], const CoefficientType y[], unsigned int n) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >
InterpolateAt(const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >
Inverse(const Element &a) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::Inverse(const Element &a) const =0AbstractGroup< T >pure virtual
InversionIsFast() constAbstractGroup< T >inlinevirtual
IsUnit(const Element &a) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::IsUnit(const Element &a) const =0AbstractRing< T >pure virtual
Mod(const Element &a, const Element &b) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::Mod(const Element &a, const Element &b) const=0AbstractEuclideanDomain< PolynomialOver< T > >pure virtual
MultiplicativeGroup() constAbstractRing< T >inlinevirtual
MultiplicativeIdentity() constRingOfPolynomialsOver< T >inlinevirtual
MultiplicativeInverse(const Element &a) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::MultiplicativeInverse(const Element &a) const =0AbstractRing< T >pure virtual
Multiply(const Element &a, const Element &b) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::Multiply(const Element &a, const Element &b) const =0AbstractRing< T >pure virtual
operator=(const AbstractRing &source)AbstractRing< T >inline
RandomElement(RandomNumberGenerator &rng, const RandomizationParameter &parameter) (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
RandomizationParameter typedef (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >
Reduce(Element &a, const Element &b) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::Reduce(Element &a, const Element &b) constAbstractGroup< T >virtual
RingOfPolynomialsOver(const CoefficientRing &ring) (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
ScalarMultiply(const Element &a, const Integer &e) constAbstractGroup< T >virtual
SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) constAbstractRing< T >virtual
SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) constAbstractGroup< T >virtual
Square(const Element &a) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::Square(const Element &a) constAbstractRing< T >virtual
Subtract(const Element &a, const Element &b) const (defined in RingOfPolynomialsOver< T >)RingOfPolynomialsOver< T >inline
AbstractEuclideanDomain< PolynomialOver< T > >::Subtract(const Element &a, const Element &b) constAbstractGroup< T >virtual
~AbstractGroup() (defined in AbstractGroup< T >)AbstractGroup< T >inlinevirtual