Crypto++ 8.9
Free C++ class library of cryptographic schemes
AbstractRing< T > Member List

This is the complete list of members for AbstractRing< T >, including all inherited members.

AbstractRing()AbstractRing< T >inline
AbstractRing(const AbstractRing &source)AbstractRing< T >inline
Accumulate(Element &a, const Element &b) constAbstractGroup< T >virtual
Add(const Element &a, const Element &b) const =0AbstractGroup< T >pure virtual
CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) constAbstractRing< T >virtual
CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) constAbstractGroup< T >virtual
Divide(const Element &a, const Element &b) constAbstractRing< T >virtual
Double(const Element &a) constAbstractGroup< T >virtual
Element typedef (defined in AbstractRing< T >)AbstractRing< T >
Equal(const Element &a, const Element &b) const =0AbstractGroup< T >pure virtual
Exponentiate(const Element &a, const Integer &e) constAbstractRing< T >virtual
Identity() const =0AbstractGroup< T >pure virtual
Inverse(const Element &a) const =0AbstractGroup< T >pure virtual
InversionIsFast() constAbstractGroup< T >inlinevirtual
IsUnit(const Element &a) const =0AbstractRing< T >pure virtual
MultiplicativeGroup() constAbstractRing< T >inlinevirtual
MultiplicativeIdentity() const =0AbstractRing< T >pure virtual
MultiplicativeInverse(const Element &a) const =0AbstractRing< T >pure virtual
Multiply(const Element &a, const Element &b) const =0AbstractRing< T >pure virtual
operator=(const AbstractRing &source)AbstractRing< T >inline
Reduce(Element &a, const Element &b) constAbstractGroup< T >virtual
ScalarMultiply(const Element &a, const Integer &e) constAbstractGroup< T >virtual
SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) constAbstractRing< T >virtual
SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) constAbstractGroup< T >virtual
Square(const Element &a) constAbstractRing< T >virtual
Subtract(const Element &a, const Element &b) constAbstractGroup< T >virtual
~AbstractGroup() (defined in AbstractGroup< T >)AbstractGroup< T >inlinevirtual